Please wait a minute...
金属学报  2007, Vol. 43 Issue (3): 235-239     
  论文 本期目录 | 过刊浏览 |
高硅铸钢残余奥氏体分布形态及其对力学性能的影响
陈 祥 李言祥
清华大学机械工程系
Morphology of Retained Austenite and Its Effects on the Mechanical Properties of High Silicon Cast Steel
CHEN Xiang; LI Yanxiang
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education of China; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
引用本文:

陈祥; 李言祥 . 高硅铸钢残余奥氏体分布形态及其对力学性能的影响[J]. 金属学报, 2007, 43(3): 235-239 .
, . Morphology of Retained Austenite and Its Effects on the Mechanical Properties of High Silicon Cast Steel[J]. Acta Metall Sin, 2007, 43(3): 235-239 .

全文: PDF(902 KB)  
摘要: 采用透射电子显微镜(TEM)对高硅铸钢等温淬火热处理后的显微组织以及残余奥氏体分布形态进行了研究,对等温淬火组织中残余奥氏体量进行了测定。结果表明,高硅铸钢等温淬火组织中残余奥氏体呈两种不同的分布形态,薄膜状残余奥氏体以及大块状、三角状残余奥氏体,其中呈薄膜状分布的残余奥氏体与贝氏体铁素体间的位向符合K-S关系。呈薄膜状分布的残余奥氏体对钢的综合力学性能特别是韧性有积极的作用;而呈大块状、三角状分布的残余奥氏体,由于其机械稳定性差,对钢的各项力学性能均有不利的影响。要获得具有优异综合力学性能的高硅铸钢,薄膜状残余奥氏体的量与块状残余奥氏体的量的比值Vγ-F /Vγ-B要大于1.0。
关键词 高硅铸钢等温淬火残余奥氏体    
Abstract:The microstructure and morphology of retained austenite of the austempered high silicon cast steel after various austempering combinations are investigated by TEM, and the volume fraction of retained austenite is also studied by XRD method. The experiments indicate that the retained austenite present at the isothermal transformation temperature has two typical morphologies, film shaped and blocky retained austenite. There are K-S orientation relationship between interface of film shaped retained austenite and bainite ferrite. The film shaped retained austenite is conductive to both high strength and good toughness, while the blocky retained austenite has poor stability and thus is detrimental to the mechanical properties of the steel. It is suggested that the ratio of volume fraction of the film shaped/blocky retained austenite must exceed about 1.0 for optimum mechanical properties.
Key words
收稿日期: 2006-06-27     
ZTFLH:  TG225  
[1]Santos H M C M.In:Liu B C ed.,Proceedings of the 61st World Foundry Congress.Beijing:International Aca- demic Press,1995:347
[2]Chen X,Li Y X.Mech Eng Mater,2000;24(2):14 (陈祥,李言祥.机械工程材料,2000;24(2):14)
[3]Li Y X,Chen X.Mater Sci Eng,2001;A308:277
[4]Li Y X,Chen X.Foundry,2000;49:525 (李言祥,陈祥.铸造,2000;49:525)
[5]Chen X,Li Y X,Fu H G.Acta Metall Sin,2005;41:1061 (陈祥,李言祥,符寒光.金属学报,2005;41:1061)
[6]Putatunda S K.Mater Sci Eng,2001;A297:31
[7]Putatunda S K.Mater Design,2003;24:435
[8]Putatunda S.K.Mater Manuf Processes,2001;16:743
[9]Edmonds D V,Cochrane R C.Metall Trans,1990;21: 1527
[10]Bhadeshia H K D H,Edmonds D V.Met Sci,1983;17: 411
[11]Bhadeshia H K D H,Edmonds D V.Met Sci,1983;17: 420
[12]Miihkinen V T T,Edmonds D V.Mater Sci Technol,1987; 3:432
[1] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[2] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[3] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[4] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[5] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[6] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[7] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[8] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[9] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[10] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
[11] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[12] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
[13] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[14] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.
[15] 巨彪, 武会宾, 唐荻, 潘学福. 微观组织演变对超高强耐磨钢板力学性能的影响[J]. 金属学报, 2014, 50(9): 1055-1062.