Please wait a minute...
金属学报  2006, Vol. 42 Issue (3): 251-258     
  论文 本期目录 | 过刊浏览 |
非比例加载下冷变形Zr-4合金的宏观应力响应及其位错亚结构
王航;丁向东;肖林
西安交通大学金属材料强度国家重点实验室
WANG Hang; DING Xiangdong; XIAO Lin; SUN Jun
引用本文:

王航; 丁向东; 肖林 . 非比例加载下冷变形Zr-4合金的宏观应力响应及其位错亚结构[J]. 金属学报, 2006, 42(3): 251-258 .
, , , . [J]. Acta Metall Sin, 2006, 42(3): 251-258 .

全文: PDF(522 KB)  
摘要: 研究了相位角30o 、 60o 、90o和等效应变幅0.8%、0.6%、0.4%时双轴非比例加载下, 冷变形去应力状态Zr-4合金宏观响应和微观位错亚结构。结果表明: 应力矢量和应变增量矢量之间的滞迟角 在循环变形初期表现为较大的变化幅度,随着塑性变形的进行,变化幅度逐渐减小,并趋于稳定。滞迟角的变化幅度与加载路径曲率的变化有关。90°相位角时,变化幅度最小,30°时变化幅度最大。在椭圆和圆形加载路径下,随着应变路径弧长 的增大,等效应力的平均值升高,而变化幅度减小,并逐渐趋于稳定。随着相位角提高,等效应力响应的平均值升高。Zr-4合金在非比例加载过程中表现出初始硬化,随后持续软化的特征。随着相位角提高,循环软化程度加剧。非比例循环过程中Zr-4合金的等效应力高于相同等效应变幅下的比例加载, 表现出潜在强化特征。TEM观察表明:随着相位角的增加,Zr-4合金双轴疲劳位错亚结构由单个位错线向位错缠结及成熟的位错胞转化。材料内部各向同性强化机理加强是Zr-4合金非比例潜在强化的主要原因。
关键词 Zr-4合金非比例加载应力响应附加强化    
Abstract:Macroscopic response and microscopic substructure have been studied for Zr-4 alloy in the cold-worked condition, which was subjected to biaxial out-of-phase loading with different phase angles of 30o 、60o 、90o and different equivalent strain amplitudes of 0.4%、0.6%、0.8%. The results show that the delay angle between stress deviation and strain increment tensor firstly exhibits a large variation range, and then drop to saturation as the plastic deformation processes. The variation range of delay angle depends on the curvature of loading path, it has the minimum value at 90o phase angle, and has the maximum one at 30o. The average value of equivalent stress increases, however, its variation range decreases to stable as the phase angle and equivalent strain amplitude increase. Zr-4 alloy displays an initial hardening followed by cyclic softening under out-of-phase loading. The Mises stress response curve of Zr-4 alloy under out-of-phase loading lies above that under both unaxial and in-phase loading. It indicates that cyclic additional hardening is displayed in Zr-4 under out-of-phase loading. TEM examination shows that the typical dislocation configuration changes from individual dislocation lines to tangles and embryonic dislocation cells as the phase angle and the equivalent strain amplitude increase. The isotropic hardening mechanism plays an important role in inducing cycle additional hardening.
Key wordsZr-4    proportional loading    non-proportional loading    additional hardening    dislocation
收稿日期: 2005-06-16     
ZTFLH:  TG146.4  
[1] Xiao L, Kuang Z B. Acta Mater, 1996; 44: 3059
[2] Doong S H, Socie D F, Robertson I M. ASME J Eng Mater Technol, 1990; 112: 456
[3] McDowell D L. J Mech Phys Solids, 1985; 33: 556
[4] Doong S H, Socie D F. ASME J Eng Mater Technol, 1991; 113: 23
[5] Nishino S, Naomi H, Masao S. Fatigue Fracture Eng Mater Struct, 1986; 9: 65
[6] McDowell D L, Stahl D R. Metall Trans, 1988 ; 19A: 1277
[7] Ilyushin A A, Stahl D R, Stock S R, Antolovich S D. Appl Math Mech, 1954; 18: 641
[8] Lamba H S, Sidebottom O M. ASME J Eng Mater Technol, 1978; 100: 96
[9] Shiratori E, Ikegami K, Kaneko K. J Mech Phys Solids, 1975; 23: 325
[10] Ohashi Y, Kurita T, Suzuki T. J Mech Phys Solids, 1981; 29: 51
[11] Zhao S X. PhD Dissertation, Xi'an Jiaotong University, 1996 (赵社戌.西安交通大学博士学位论文, 1996)
[12] Xiao L, Umakoshi Y, Sun J. Metall Mater Trans, 2001; 32A: 2841
[13] Xiao L, Kuang Z B. Acta Metall Sin, 1998; 34: 242 (肖 林,匡震邦.金属学报,1998;34:242)
[14] Xiao L. ASME J Eng Mater Technol, 2000; 122: 42
[15] Pochettino A A, Gannio N, Vial Edwards C, Penelle R. Scr Metall Mater, 1992; 27: 1859
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[6] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[8] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[9] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[10] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[11] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[12] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[13] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[14] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[15] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.