Please wait a minute...
金属学报  2006, Vol. 42 Issue (11): 1221-1226     
  论文 本期目录 | 过刊浏览 |
焊接残余应力对氢扩散影响的有限元模拟
蒋文春 巩建鸣 唐建群 陈 虎 涂善东
南京工业大学机械与动力工程学院; 南京 210009
Finite Element Simulation of the Effect of Welding Residual Stress on Hydrogen Diffusion
JIANG Wenchun; GONG Jianming; TANG Jianqun; CHEN Hu; TU Shandong
College of Mechanical and Power Engineering; Nanjing University of Technology; Nanjing 210009
引用本文:

蒋文春; 巩建鸣; 唐建群; 陈虎; 涂善东 . 焊接残余应力对氢扩散影响的有限元模拟[J]. 金属学报, 2006, 42(11): 1221-1226 .
, , , , , . Finite Element Simulation of the Effect of Welding Residual Stress on Hydrogen Diffusion[J]. Acta Metall Sin, 2006, 42(11): 1221-1226 .

全文: PDF(901 KB)  
摘要: 利用ABAQUS有限元软件,开发了一个氢扩散的耦合计算程序,对焊态和焊后热处理状态下的残余应力对氢扩散的影响进行了数值模拟,并与无应力状态下的氢扩散进行了比较。结果表明,存在焊接残余应力梯度时,氢向高应力区富集,在热影响区附近,有一个氢浓度低谷,这是氢向高应力区长程扩散所致。经过焊后热处理,应力松弛效果明显,最大残余应力下降近50%,对氢扩散的影响也大为降低,氢的最高浓度降低了近40%。因此,焊后热处理可以明显降低焊接接头处的残余应力,有效降低材料在氢环境下开裂的敏感性。
关键词 氢扩散焊接残余应力热处理顺次耦合有限    
Abstract:A sequential coupling calculating method on hydrogen diffusion had been developed based on the finite element program-ABAQUS. Using this method, effect of welding residual stress on the hydrogen diffusion was numerically simulated for the as-weld condition and postweld heat treatment (PWHT) condition. The diffusion without the effect of stress was also taken into account and compared with those with stress. The results show that hydrogen will diffuse and accumulate in the higher stress region under the existence of welding residual stress gradient. A low hydrogen concentration valley exists near the heat-affected zone(HAZ), which is caused by the long-range diffusion of hydrogen to the high stress zone. After the PWHT, stress relaxation is obvious and the maximum stress is decreased about 50%, which influences the hydrogen diffusion and makes the hydrogen concentration be decreased about 40%. Therefore, decrease in the welding residual stress by PWHT can effectively reduce the hydrogen concentration in the weldment and the susceptibility of material to environment hydrogen cracking.
Key wordshydrogen diffusion    welding residual stress    heat treatment    sequential coupling    finite element simulat
收稿日期: 2006-05-12     
ZTFLH:  TG457  
[1] Zhang Y R, Dong C F, Li X G, Rui X L, Zhou H R. Acta Metall Sin, 2006; 42: 521 (张颖瑞,董超芳,李晓钢,芮晓龙,周和荣.金属学报,2006; 42:521)
[2] Guo H, Li G F, Cai X, Yang W. Acta Metall Sin, 2004; 40: 967 (郭浩,李光福,蔡殉,杨武.金属学报,2004;40:967)
[3] Tang J Q, Gong J M, Zhang L J. Corros Sci Prot Technol, 2005; 17: 432 (唐建群,巩建鸣,张礼敬.腐蚀科学与防护技术, 2005;17: 432)
[4] Rogante M, Battistella P, Cesari F. Int J Hydrogen Energy, 2006; 31: 597
[5] Tang J Q, Gong J M, Zhang X C, Tu S T. Eng Failure Anal, 2006; 13: 1057
[6] Pandey R K. Eng Failure Anal, 2005; 12: 376
[7] Nyborg R. ASTM STP, 1994: 27
[8] Xue J R. Trans Chin Weld Inst, 1998; 19: 263 (薛继仁.焊接学报,1998;19:263)
[9]Zhang T,Yao Y,Chu W Y,Qiao L J.Acta Metall Sin, 2002;38:844 (张涛,姚远,褚武扬,乔利杰.金属学报.2002;38:844)
[10] Turnbull A, Ferriss D H. Structural Materials: Properties, Microstructure and Processing, 1996; 206(1): 1
[11] Hughey, Michael P, Cook, Robert F. Appl Phys Lett, 2004; 85: 404
[12] Quan G F. J Chin Soc Corros Prot. 1993; 13: 80 (权高峰.中国腐蚀与防护学报, 1993;13:80
[13] Zhao X W, Su Y J, Gao K W, Qiao L J, Chu W Y, Xu Y. Acta Metall Sin, 2005; 41: 173 (赵显武,宿彦京,高克玮,乔利杰,褚武扬.许颖.金属学报,2005;41:173)
[14] Zhang X H, Chen P Y, Tan C Y. Trans Chin Weld Inst, 2002; 23(2): 9 (张显辉,陈佩寅,谭长瑛.焊接学报,2002;23(2):9)
[15] Zhang X H, Chen P Y, Tan C Y. Trans Chin Weld Inst, 2000; 21(3): 51 (张显辉,陈佩寅,谭长瑛.焊接学报, 2000;21(3):51)
[16] Li Y J, Wang Q. J Mater Proc Technol, 2005; 161(3): 423
[17] Hibbit K. ABAQUS User Manual, 2003
[18] Hirth J P. Metall Trans, 1980; 11A: 861
[19] Teng T L, Lin C C. Int J Pres Vessels Piping, 1998; 75: 857
[20] Li M S, Xie X, Wang L F, Gao L X. Pressure Vessel Technol, 2003; 20(11): 18 (李萌盛,谢霞,王丽芳,高丽霞.压力容器,2003;20(11): 18)
[21] Zhao L. Corros Sci Prot Technol, 2005; 17: 349 (赵亮.腐蚀科学与防护技术,2005;17:349)
[22] Wang F K. Weldment Structure Engineering Analysis of Pressure Vessel. Beijing: Chemical Industry Press, 1998: 20 (王福宽.压力容器焊接结构工程分析.北京:化学工业出版社, 1998:20)
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[6] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[7] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[8] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[12] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[14] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[15] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.