Please wait a minute...
金属学报  2004, Vol. 40 Issue (6): 561-    
  论文 本期目录 | 过刊浏览 |
超细晶粒高强度钢的延迟断裂行为
惠卫军 董 瀚 翁宇庆 时 捷 聂义宏 褚作明 陈蕴博
钢铁研究总院结构材料研究所; 北京 100081
Delayed Fracture Behavior Of Ultrafine Grained High Strength Steel
HUI Weijun; DONG Han; WENG Yuqing; SHI Jie; NIE Yihong;CHU Zuoming; CHEN Yunbo
Institute of Structural Materials; Central Iron & Steel Research Institute; Beijing 100081
引用本文:

惠卫军; 董瀚; 翁宇庆; 时捷; 聂义宏; 褚作明; 陈蕴博 . 超细晶粒高强度钢的延迟断裂行为[J]. 金属学报, 2004, 40(6): 561-.
, , , , , , . Delayed Fracture Behavior Of Ultrafine Grained High Strength Steel[J]. Acta Metall Sin, 2004, 40(6): 561-.

全文: PDF(757 KB)  
摘要: 对于微合金化处理的42CrMoVNb钢, 通过快速循环热处理的方法获得最小2m的超细奥氏体晶粒, 采用缺口拉伸延迟断裂实验研究了超细晶粒试样的延迟断裂行为。结果表明, 随着晶粒细化, 42CrMoVNb钢的强度和缺口拉伸延迟断裂抗力逐渐提高; 但当晶粒细化到2 m时, 强度和延迟断裂抗力均不再提高。在高温回火态, 当晶粒尺寸在20---4 m范围时, 断裂机制主要为穿晶断裂; 但当晶粒进一步细化到2 m时,断裂机制转变为沿晶断裂。在低温回火态, 不同晶粒尺寸的试样均主要为沿晶断裂。从降低应力集中和夹杂元素晶界偏聚等角度对超细晶粒高强度钢的延迟断裂行为进行了探讨。
关键词 超细晶粒延迟断裂行为高强度钢    
Abstract:42CrMoVNb steel with ultrafine prior austenite grain, its size as fine as 2 m, was obtained through rapidly cycle heat treatment. The effect of ultrafine grain size on delayed fracture behavior is studied using sustained load tensile test with notched specimen. It is shown that both strength and delayed fracture resistance of 42CrMoVNb steel increase when its grain size is refined from 20 m to 4 m, but they do not increase when refined to 2 m. When the steel was tempered at high temperature, its fracture characteristic at crack initiation area changes from intergranular to transgranular when its grain size is refined from 20 m to 8---4 m, while the fracture characteristic is intergranular when its grain size is refined to 2 m. Its fracture characteristics are all intergranular fracture for all the grain sizes investigated when tempered at low temperature. The reason for this kind of delayed fracture behavior is discussed mainly from the stress concentration and segregation at grain boundary.
Key wordsultrafine grain size    delayed fracture behavior    high strength steel
收稿日期: 2003-07-10     
ZTFLH:  TG111.91  
[1] Banerji S K, McMahon Jr C J, Feng H C. Metall Trans A, 1978; 9A(2) : 237
[2] Bandyopadhyay N, Kameda J, McMahon Jr C J. Metall Trans A, 1983; 14A(5) : 881
[3] Proctor R P M, Paxton H W. Trans Am Soc Met, 1969;62(4) : 989
[4] McDarmaid D S. Met Technol, 1978; 5(1) : 7
[5] Lessar J F, Gerberich W W. Metall Trans A, 1976; 7A:953
[6] Padmanabhan R, Wood W E. Metall Trans A, 1983;14A(11) : 2347
[7] Lin D L, Lan Y, Wu J S. Metall Trans A, 1988; 19A(9) :2225
[8] Li G F, Wu R G, Lei T C. Metall Trans A, 1990; 21A(2) :503
[9] Kawasaki K, Chiba T, Koga H, Yamazaki T. Tetsu-to-Hagane, 1987; 73(16) : 2298(川奇一博, 千叶贵世, 古贺久喜, 山崎隆雄.铁钢, 1987;73(16) : 2298)
[10] Webster D. Trans ASM,1969; 62: 759
[11] Weng Y Q. Ultra Steel 2000, Proc Inter Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. Japan, Tsukuba: NIMS, 2000: 11
[12] Chu W Y. Hydrogen Damage and Delayed Failure. Bei-(褚武扬.氢损伤和滞后断裂.北京: 冶金工业出版社, 1988:474)
[13] Matsuyama S. Delayed Fracture. Tokyo: Nikkan-Kogyo Press, 1989: 67(松山晋作. 破坏. 北京: 日刊工业新闻社, 1989: 67)
[14] Yamsaki S, Takahashi T. Testu-to-Hagane, 1997; 83(7) :460(山崎真吾, 高桥 棯彦. 铁钢, 1997;83(7) : 460)
[15] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environmental Fracture. Beijing: Science Press, 2000:149(褚武扬, 乔利杰, 陈奇志, 高克玮.断裂与环境断裂. 北京:科学出版社, 2000: 149)
[16] Umemoto M, Tamura I. J Heat Treat, 1984; 24(6) : 334(梅本, 田村今男. 热处理, 1984; 24(6) : 334)
[17] The Commercial and Industrial Ministry of Japan. Iron & Steel World, 1996; (12) : 18(通商产业省基础产业局制铁课. 铁钢界, 1996; (12) : 18)
[18] Banerji S K, McMahon Jr. C J, Feng H C. Metall Trans A, 1978; 9A(2) : 237
[19] Tien J K. In: Thompson A W, Bernstein I M eds, Met Soc AIMK,1976: 309
[20] Hui W J. PhD Thesis, Beijing: Central Iron & Steel Research Institute, 2003(惠卫军.钢铁研究总院博士学位论文, 北京, 2003)
[21] Li G F, Wu R G, Lei T C. Metall Trans A, 1992; 23A(10) :2879
[22] Pressouyre G M. Metall Trans A, 1979; 10A(10) : 1571
[1] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[2] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[3] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[4] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[5] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[6] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[7] 张永健,惠卫军,董瀚. 一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为[J]. 金属学报, 2013, 49(10): 1153-1159.
[8] 王颖,张柯,郭正洪,陈乃录,戎咏华. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48(6): 641-648.
[9] 王存宇 时捷 曹文全 惠卫军 王毛球 董瀚. Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究[J]. 金属学报, 2011, 47(6): 720-726.
[10] 孙敏 肖葵 董超芳 李晓刚 钟平. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47(4): 442-448.
[11] 李阳 张永健 惠卫军 王毛球 董瀚. 1500 MPa级高强度钢42CrMoVNb的氢吸附行为[J]. 金属学报, 2011, 47(4): 423-428.
[12] 张柯 许为宗 郭正洪 戎咏华 王毛球 董瀚. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47(4): 489-496.
[13] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[14] 王六定 丁富才 王佰民 朱明 钟英良 梁锦奎. 低合金超高强度钢亚结构超细化对韧性的影响[J]. 金属学报, 2009, 45(3): 292-296.
[15] 董翠; 张述泉; 李安; 王华明 . 激光熔化沉积300M超高强度钢的显微组织[J]. 金属学报, 2008, 44(5): 598-602 .