Please wait a minute...
金属学报  2011, Vol. 47 Issue (4): 489-496    DOI: 10.3724/SP.J.1037.2010.00547
  论文 本期目录 | 过刊浏览 |
新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响
张柯1), 许为宗1), 郭正洪1), 戎咏华1), 王毛球2), 董瀚2)
1) 上海交通大学材料科学与工程学院, 上海 200240
2)  钢铁研究总院先进钢铁材料技术国家工程研究中心, 北京 100081
EFFECTS OF NOVEL Q-P-T AND TRADITIONAL Q-T  PROCESSES ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF MARTENSITIC STEELS WITH DIFFERENT CARBON CONTENT
ZHANG Ke1), XU Weizong1), GUO Zhenghong1), RONG Yonghua1), WANG Maoqiu2), DONG Han2)
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) National Engineering Research Center of Advanced Steel Technology, Central Iron-Steel Research Institute, Beijing 100081
引用本文:

张柯 许为宗 郭正洪 戎咏华 王毛球 董瀚. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47(4): 489-496.
. EFFECTS OF NOVEL Q-P-T AND TRADITIONAL Q-T  PROCESSES ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF MARTENSITIC STEELS WITH DIFFERENT CARBON CONTENT[J]. Acta Metall Sin, 2011, 47(4): 489-496.

全文: PDF(1492 KB)  
摘要: 对比新型淬火-分配-回火(Q-P-T)和传统淬火-回火(Q-T)处理对中、低碳钢力学性能的影响发现, 在提高材料的强塑积方面 Q-P-T处理远胜于Q--T处理, 特别是对中碳钢的效果更为显著. 在所研究的试样中, Fe-0.42C-1.46Mn-1.58Si-0.028Nb合金的强塑积经Q-P-T处理后高达31627 MPa?%, 且延伸率达20.3%, 不仅远高于传统Q-T处理的试样, 而且已满足新一代先进高强度钢预测的性能. 显微组织分析表明, Q-T和Q-P-T处理的差异在于残留奥氏体的量和尺寸分布以及马氏体板条的均匀程度. 前者含少量 (<3%) 较薄的“薄膜状”残留奥氏体, 且马氏体板条尺寸范围较宽; 而后者含较多较厚的“薄片状”残留奥氏体, 且马氏体板条尺寸分布较窄. 因此Q-P-T处理的先进高强度钢具有承受较强的塑性变形和阻止微裂纹扩展的能力.
关键词 Q-P-T工艺先进高强度钢残留奥氏体强塑积    
Abstract:Compared with traditional quenching and tempering (Q-T) treatment, the product of strength and elongation of the carbon steel can be enhanced significantly by novel quenching-partitioning-tempering (Q-P-T) treatment, especially for the medium carbon steel. Based on the tensile results, the product of strength and elongation of the Fe-0.42C-1.46Mn-1.58Si-0.028Nb specimen treated by Q-P-T, is up to 31627 MPa?% with elongation 20.3\%, which not only is higher than the specimen treated by Q-T process, but also meets the mechanical properties predicted of next generation advanced high strength steel. Microstructural analysis indicates the differences in Q-T and Q-P-T process lie on the amount of retained austenite and its size distribution as well as the size range of lath martensite. The former results in the low amount (<3%) of thin film-like austenite in addition to nonuniform martensite size, while the later results in the high amount of thick flake-like austenite accompanying uniform martensite size. Therefore, the higher barrier for micro-crack propagation and the better plastic deformation ability of advanced high strength steel (AHSS) can be obtained by Q-P-T treatment.
Key wordsQ-P-T process    advanced high strength steel    retained austenite    product of strength and elongation
收稿日期: 2010-10-14     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金重点项目51031001和中联先进钢铁材料技术有限责任公司项目091507资助

作者简介: 张柯, 男, 1982年生, 博士生
[1] Sakuma Y. In: Baker M A ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale: Association for Iron–Steel Technology, 2004: 11

[2] Sugimoto K, Kobayshi M, Hashimoto S. Metall Trans, 1992; 23: 3085

[3] Speer J G, Matlock D K, Cooman B C, Schroch J G. Acta Mater, 2003; 51: 2661

[4] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426–432: 1089

[5] Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261

[6] Matlock D K, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels. Korea: The Korean Institute of Metals and Materials, 2006: 774

[7] Mileiko S T, Speer J G. J Mater Sci, 1969; 4: 974

[8] Hsu T Y (Xu Z Y). Mater Sci Forum, 2007; 561: 2283

[9] Zhong N, Wang X D, Rong Y H, Wang L. Mater Sci Eng, 2009; 506: 111

[10] Speer J G, Matlock D K, DeCooman B C, Schroch J G. Acta Mater, 2003; 51: 2611

[11] Koistinen D P, Marburger R E. Acta Metall, 1959; 7: 59

[12] Fan X. Metallic X–ray Physics. Beijing: Mechanical Industry Press, 1989: 159

(范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

[13] Durnin J, Ridal K A. J Iron Steel Inst, 1968; 1: 60

[14] Morris Jr J W, Lee C S, Guo Z. ISIJ Int, 2003; 43: 410

[15] Guo Z, Lee C S, Morris Jr J W. Acta Mater, 2004; 52: 5511

[16] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. Acta Mater, 2003; 51: 1789

[17] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279

[18] Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
[1] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[2] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[4] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[5] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
[6] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[7] 闫述,刘相华,刘伟杰,蓝慧芳,吴红艳. Cu低碳钢Q&P工艺处理的组织性能与强化机理[J]. 金属学报, 2013, 49(8): 917-924.
[8] 王颖,张柯,郭正洪,陈乃录,戎咏华. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48(6): 641-648.
[9] 王存宇 时捷 曹文全 惠卫军 王毛球 董瀚. Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究[J]. 金属学报, 2011, 47(6): 720-726.
[10] 戎咏华. 先进超高强度-高塑性Q-P-T钢[J]. 金属学报, 2011, 47(12): 1483-1489.
[11] 徐祖雄;马如璋;朱永全;赵钟涛;冯永荣. 40CrNiMo钢淬火组织的Mssbauer谱研究[J]. 金属学报, 1988, 24(5): 436-440.