Please wait a minute...
金属学报  2004, Vol. 40 Issue (2): 159-162     
  论文 本期目录 | 过刊浏览 |
裂纹尖端塑性区和无位错区的微观模拟
钱才富;姜忠军;陈 平;段成红;崔文勇
北京化工大学过程装备与控制工程系; 北京 100029
Micro-Simulation of Crack Tip Plastic Zone and Dislocation-Free Zone
QIAN Caifu; JIANG Zhongjun; CHEN Ping; DUAN Chenghong; CUI Wenyong
Department of Process Equipment and Control Engineering; Beijing University of Chemical Technology; Beijing 100029
引用本文:

钱才富; 姜忠军; 陈平; 段成红; 崔文勇 . 裂纹尖端塑性区和无位错区的微观模拟[J]. 金属学报, 2004, 40(2): 159-162 .
, , , , . Micro-Simulation of Crack Tip Plastic Zone and Dislocation-Free Zone[J]. Acta Metall Sin, 2004, 40(2): 159-162 .

全文: PDF(2558 KB)  
摘要: 用细观断裂力学研究了刃型位错从I型、II型及I+II复合型裂纹尖端沿多个滑移面的发射以及裂纹周围无位错区和塑性区的形状和大小. 结果表明, II型裂纹塑性区形状和宏观断裂力学算出的塑性区形状有所不同, 而I型裂纹塑性区形状则类似; 当外载荷相同时, II型裂纹的塑性区比I型裂纹的塑性区要大得多; 复合型裂纹的塑性区形状和大小更接近II型裂纹. 各种裂纹尖端周围均存在无位错区, 其形状与相应的塑性区相似.
关键词 位错发射 裂纹 塑性区    
Abstract:Edge dislocation emissions from Mode I, Mode II and mixed-mode crack tips along multiple inclined slip planes are simulated, and plastic zones as well as dislocation--free zones are obtained. It is found that the shape of the Mode II plastic zone is quite different from that obtained based on von Mises yielding criterion and consists of three parts in which the biggest one locates in front of the crack tip. For Mode I crack, however, a similar plastic zone is obtained. Under the same magnitudes of applied stress, the plastic zone of Mode II crack is much larger than that of Mode I crack, and the plastic zone of a mixed--mode crack is mainly affected by the Mode II component. Dislocation--free zones exist around all types of crack tips, which have similar shapes as the corresponding plastic zones.
Key wordsdislocation emission    crack    plastic zone
收稿日期: 2003-02-24     
ZTFLH:  TG111.91  
[1] Ohr S M. Mater Sci Eng, 1985; 72: 1
[2] Chiao Y H, Clarke D R. Acta Metall, 1989; 37: 203
[3] Zielinski W, Lii M J, Gerberich W W. Acta Metall Mater, 1992; 40: 2861
[4] Marsh P G, Zielinski W, Huang H, Gerbrich W W. Acta Metall Mater, 1992; 40: 2883
[5] Li C, Zhao H, Zhan Z, Zhou H. Eng Fract Mech, 1992; 43: 1009
[6] Chia K Y, Burns S J. Scr Metall, 1984; 18: 467
[7] Fu R, Long Q Y, Zhang T Y, Lung C W. J Phys, 1989; 22D: 991
[8] Foeke T, Gerberich W W. Scr Metall Mater, 1990; 24: 553
[9] Bilby B A, Cottrell A H, Swinden K H. Proc R Soc London, 1963; 272: 304
[10] Chang S J, Ohr S M. J Appl Phys, 1981; 52: 7174
[11] Dai S H, Li J C M. Scr Metall, 1982; 16: 183
[12] Majumdar B S, Burns S J. Acta Metall, 1981; 29: 579
[13] Zhao R H, Dai S H, Li J C M. Int J Fract, 1985; 29: 3
[14] Zhao R H, Li J C M. J Eng Mater Technol, 1985; 107A: 277
[15] Zhao R H, Li J C M. J Appl Phys, 1985; 58B: 4117
[16] Pippan R. Scr Metall, 1989; 23: 1575
[17] Li J, Li J C M. Mater Sci Eng, 1990; 129A: 167
[18] Li J, Li J C M. Mater Sci Eng, 1990; 129A: 175
[19] Yokobori A T Jr, Isogai T. Yokobori T. Acta Metall Mater, 1993; 41: 1405
[20] Loyola de Oliveira M A, Michot G. Mater Sci Eng, 1994; 176A: 139
[21] Lakshmanan V, Li J C M. Mater Sci Eng, 1988: 104A: 95
[22] Qian C F, Li J C M. Mech Mater, 1996; 24A: 1
[23] Qian C F, Li J C M. Mech Mater, 1996; 24A: 11
[24] Chen Q Z, Chu W Y, Hsiao C M. Acta Metall Mater. 1995; 43: 4371
[25] Qiao L J, Mao X, Chen Q Z. Metall Mater Trans, 1995; 26A: 1461
[26] Zhang Y, Wang Y B, Chu W Y. Scr Metall Mater, 1994; 31: 279
[27] Chen Q Z, Gao K W, Zhang Y, Chu W Y. Fatigue Fract Eng Mater Struct, 1998; 21: 1415
[28] Qian C F, Qiao L J, Chu W Y. Sci Chin, 2000; 43E: 421
[29] He Q Z, Li Z N. Engineering Fracture Mechanics. Beijing: Beijing University of Aeronautic and Astronautic Press, 1993: 47(何庆芝,郦正能.工程断裂力学.北京:北京航空航天大学出版社,1993:47)
[30] Ha K F. Physical Basis for Fracture. Beijing: Science Press, 2000: 150(哈宽富.断裂物理基础.北京:科学出版社,2000:150)
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[5] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[6] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[7] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[9] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[10] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[12] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[15] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.