Please wait a minute...
金属学报  2001, Vol. 37 Issue (11): 1203-1207     
  论文 本期目录 | 过刊浏览 |
SiC晶须增强6061Al基复合材料的热机械疲劳性能Ⅱ.疲劳寿命与损伤机制
钱立和  王中光  户田裕之  小林俊郎
中国科学院金属研究所材料疲劳与断裂国家重点实验室;沈阳110016
引用本文:

钱立和; 王中光; 户田裕之; 小林俊郎 . SiC晶须增强6061Al基复合材料的热机械疲劳性能Ⅱ.疲劳寿命与损伤机制[J]. 金属学报, 2001, 37(11): 1203-1207 .

全文: PDF(196 KB)  
摘要: 研究了体积分数为15%和28%SiCw/6061Al基复合材料的同相和反相热机械疲劳寿命和损伤机制.结果表明:在小应变范围时,同相比反相疲劳寿命长,而在大应变时,同相疲劳寿命接近(对于28%SiCw)、甚至短于(对于15%SiCw)反相热机械疲劳寿命;15%SiCw/6016Al基复合材料的反相热机械疲劳寿命高于28%SiCw/6016Al基复合材料的寿命.两种材料的同相热机械疲劳寿命曲线存在交叉点,寿命高低取决于应变水平;同相和反相热机械疲劳的损伤均为空洞在SiC晶须周围基体中形核、长大和连接.
关键词 复合材料晶须热机械疲劳疲劳寿命    
Key words
收稿日期: 2001-05-17     
ZTFLH:  TB33  
[1] Qian L H, Wang Z G, Toda H, Kobyashi T. Acta Metallsin, 2001; 37: 1198(钱立和,王中光.户田裕之,小林俊郎。金属学报,2001; 37:1198)
[2] Neu R W, Sehitoglu H. Metall Trans, 1989; 20A: 1755
[3] Mall S, Schubbe J J. Com Sci Technol, 1994, 50: 49
[4] Zauter R, Petry F, Christ H J, Mughrabi H. In: SehitogluH ed, Thermo-mechanical Fatigue Behavior of Materials,Philadephia: American Society for Testing and MaterialsASTM STP 1186, 1993: 70
[5] Liu P L, Wang Z G. Mater Sci Technol, 1997; 13: 667
[6] Raj R. Acta Metall, 1978; 26: 995
[7] Liu P L. Ph.D Thesis, Institute of Metal Research, TheChinese Academy of Sciences, April, 1997(刘丕林,中国科学院金属研究所博士学位论文,1997)
[8] Nutt S R, Duva J M. Scr Metall, 1986; 20: 1055
[9] Christman T, Needleman A, Nutt S, Suresh S. Mater SciEng, 1989; 107A: 49
[10] Wang L, Sun Z M. Kobayashi T. Scr Metall, 1996; 35: 9737
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[5] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[8] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[9] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[10] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[11] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[12] 田志华, 张培根, 刘玉爽, 陆成杰, 丁健翔, 孙正明. MAX 相表面金属晶须自发生长现象的研究现状与展望[J]. 金属学报, 2022, 58(3): 295-310.
[13] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[14] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[15] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.