Please wait a minute...
金属学报  1996, Vol. 32 Issue (10): 1068-1074    
  论文 本期目录 | 过刊浏览 |
Co/C多层膜的结构稳定性
姜恩永;白海力;王存达
天津大学
STRUCTURAL STABILITY OF Co/C MULTILAYERS
JIANG Enyong;BAI Haili;WANG Cunda;U.BOGLI(Tianjin University;Tianjin 300072)(Department of Applied Physics;Tianjin University;Tianjin 300072)(Manuscript received 1995-12-08;in revised form 1996-06-12)
引用本文:

姜恩永;白海力;王存达. Co/C多层膜的结构稳定性[J]. 金属学报, 1996, 32(10): 1068-1074.
, , . STRUCTURAL STABILITY OF Co/C MULTILAYERS[J]. Acta Metall Sin, 1996, 32(10): 1068-1074.

全文: PDF(534 KB)  
摘要: 用X射线衍射、透射电镜、Raman光谱、X射线光电子谱等测量方法研究了用对向靶溅射法制备的Co/C多层膜的结构热稳定性.退火Co/C多层膜的结构变化包括周期膨胀、非晶Co层结晶、掠入射反射率变化以及化合物的形成.400℃退火,周期膨胀主要是由于非晶碳层的石墨化.Co/C系统的相分离造成掠入射反射率增强,可解释为Co/C系统的正的混合焓.500℃退火,Co层的结晶和集聚导致了周期的异常膨胀和反射率的降低.此时界面处形成了少量的碳化物.
关键词 Co/C多层膜退火周期膨胀    
Abstract:Thermal behaviours of Co/C multilayers prepared by a dual-facing-target sputtering system were studied by using X-ray diffraction,transmission electron microscopy,Raman spectroscopy,and X-ray photoelectron spectroscopy.The changes observed in the annealed Co/C multilayers include an expansion of modulation period,crystallization in the Co layers,changes of reflectivity at grazing incidence and Co-C compound formation.Below annealing temperature of 400℃,the expansion in modulation period is mainly due to the graphitization of the amorphous carbon layers,and the enhancement of the reflectance is dominantly caused by Co-C separation that is interpreted as positive enthalpy of Co-C mixing.By 500℃,the crystallization and agglomeration of Co layers induce an enormous period expansion and a serious decrease in reflectivity.A small amount of carbide is found to form at this temperature as occurred in some other annealed metal-carbon multilayer systems.
Key wordsCo/C multilayer    annealing    period expansion.
收稿日期: 1996-10-18     
基金资助:国家自然科学基金;;北京中关村地区联合分析测试中心资助
1SpillerE,StearnsDG,KrumreyMJApplPhys,1993;74:1072SpillerE,WilczynskiJ,StearnsDG,GolubL,NystromG.ApplPhysLett,1992;61:14813SpillerE.OptEng,1990;29:6094KrishnanR,GuptaHO,SellaC,KaabouchiM.JMagnMagnMater,1991;93:1745ZieglerE,LepetreY,SchullerIK,SpillerE.ApplPhysLett,1986;48:13546MiedemaAR,deChatelPF,deBeerFR.Physica,1980;B100:19317JiangZ,DupuisV,VidalB,RavetMF,PiecuchM.JApplPhys,1992,72:9318BeemanD,SilvermanJ,LyndsR,AndersonMR.PhysRev,1984,B30:8709DillonRO.WoollamJA,KatkanantV.PhysRev.1984;B29:348210DupuisV,RavetMF,TeteC,PiecuchM,LepetreY,RivoiraR,ZieglerE.JApplPhys,1990;68:514611LepetreY,ZieglerE,SchullerIK,RivoiraR.JApplPhys,1986;64:2301
[1] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[2] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[6] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[7] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[8] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[9] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[10] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[11] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.
[12] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[13] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[14] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[15] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.