Please wait a minute...
金属学报  1995, Vol. 31 Issue (11): 485-493    
  论文 本期目录 | 过刊浏览 |
钢中剪切变形局部化的形成与发展
徐永波;白以龙;沈乐天;薛青;李环;孔丹
中国科学院金属研究所材料疲劳与断裂国家重点实验室;中国科学院力学研究所非线性介质力学开放实验室
FORMATION AND DEVELOPMENT OF SHEAR DEFORMATION LOCALIZATION IN LOW CARBON STEELS
XU Yongbo;BAI Yilong;SHEN Letian;XUE Qing;LI Huan;KONG Dan( State Key Laboratory for Fatigue and Fracture of Materials;Institute of Metal Research;Chinese Academy of Sciences; Shenyang 110015)(Laboratory for Non-Linear Mechanics of Continuous Media;Institute of Mechanics;Chinese Academy of Sciences;Beijing 100080)(Manuscript received 1994-10-28;in revised form 1995-04-01)
引用本文:

徐永波;白以龙;沈乐天;薛青;李环;孔丹. 钢中剪切变形局部化的形成与发展[J]. 金属学报, 1995, 31(11): 485-493.
, , , , , . FORMATION AND DEVELOPMENT OF SHEAR DEFORMATION LOCALIZATION IN LOW CARBON STEELS[J]. Acta Metall Sin, 1995, 31(11): 485-493.

全文: PDF(781 KB)  
摘要: 对低碳20号钢经正火,淬火和回火处理后在高速扭转过程中变形局部化的发生,发展演化过程以及最后形成的剪切带的微结构特征进行了观察。结果表明,变形局部化敏感于材料的强度,强度越高,越容易出现变形局部化。局部化的产生与发展涉及到一系列相继发生的晶体学和非晶体学的变形现象:析出相-基体间界面发射位错形成六角网络,位错胞形成并沿剪切带方向拉长;由于高速率大应变导致剪切带内局部区域产生亚结构;微裂纹的长大与聚合最终导致沿剪切带方向的断裂。
关键词 变形局部化位错亚结构微裂纹    
Abstract:The formation,development and microstructure of shear localization formed during dynamic high speed tornsional testing by split Hopkinson bar with a average strain rate range of 600,650 and 1500 s-1 have been investigated in low-carbon steels.The results showed that the shear localization is sensitive to the strength of the steel.The higher the strength of the steel,the earlier the shear localization occurs.The observations by TEM indicated that the formation and development of the shear localization involved a series of the crystallographic and non-crystallographic events including the dislocation emission from the interfaces between the precipitate and matrix,forming network,cell and tangled structures of the dislocations;the misorientation formation arising from the large accumulated plastic strain in a local area in the band and the growth and coalescence of the microcracks in the band leading to a sharp drop in the load-carrying capacity of the deformed material.
Key wordsdeformation localization    dislocation    substructure    microcrack
收稿日期: 1995-11-18     
基金资助:国家自然科学资金
1ZenerC,HollomonJH.JApplPhys,1944:15:222RogersHC.AnnuRevMaterSci,1979:9:2383RechtRF.TramASME,Ser.E:JApplMeck,1964;31:1894CulverRS.In:RohdeRW,ButderBM,HollandJR,KarnesCHeds.,MetallurgicalEffectsatHighStrainRates,NewYork:PlenumPress,1973:5195BaiY.In:MeyersMA,MurLEeds.,ShookWavesandHigh-StrainRotePhenomenainMetals.NewYork:PlenumPress,1981:2776StakerMR.ActaMetall,1981;29:6837WuFH,FreundLB.JMechPhysSolids,1984;32:1198DoddB,BaiY.MaterSciTechnol,1985;1:389CliftonRJ,DuffyJ,HartleyKA,ShawkiTG.ScrMetall,1984;18:44310HartleyKA,DuffyJ,HawleyRH.JMeckPhysSolids,1987;35:28211GiovanolaJH.MechMater,1988;7:5912Me-BarY,ShechtmanD.MaterSciEng,1983;58:18113MeyersMA,WittmanCL.MetallTrans,1990;21A:315314ChoK,ChiYC,DuffyJ.MetallTrans,1990;21A:116115WittmanCL,MeyersMA,PakHR.MetallTrans,1990;21A:70716GrebeHA,PakHR,MeyersMA.MetallTrans,1985;16A:76117XuYB,WangZG,BaiYL.MaterSciEng,1989:Al14:8118XuYB,WangX,WangZG,BaiYL.ScrMetallMater,1990;24:57119BaiYL,XueQ,XuYB,ShenLT.MechMater,1994;17:15520CostinLS,DuffyJ.JEngMater,1979;101:25821HartleyKA,DuffyJ,HawleyPH.JMechPhysSolids,1987:35:28322ShawkiT,CliftonRJ,MajdaG.BrownUniversityReportNo.ARODAAG29-81-K-0121//3.198323ShawkiTJ.Ph.Thesis,BrownUniversity,198524SemiatinSL,JonasJJ.AppendixCinFormabilityandWorkabilityofMetals.PlasticInstabilityandFlowLocalization.MetalsPark,Ohio:ASM,198425张振芳,刘民治,苏会和,徐永波.金属学报,1985;21:A384T
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[8] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[9] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[10] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[12] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[13] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[14] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[15] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.