Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1581-1589    DOI: 10.3724/SP.J.1037.2013.00406
  论文 本期目录 | 过刊浏览 |
钴基钎料钎焊DD5单晶高温合金的接头微观组织演变与力学性能研究
孙元1),刘纪德1),刘忠明2),杨金侠1),李金国1),金涛1),孙晓峰1)
1) 中国科学院金属研究所高温合金部, 沈阳 110016
2) 中航工业沈阳黎明航空发动机(集团)有限责任公司, 沈阳 110043
MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF DD5 SINGLE CRYSTAL SUPERALLOY JOINT BRAZED BY Co—BASED FILLER ALLOY
SUN Yuan1), LIU Jide1), LIU Zhongming2), YANG Jinxia1), LI Jinguo1),JIN Tao1), SUN Xiaofeng1)
1) Department of Superalloy, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Aviation Industry Corporation of China (AVIC) Shenyang Liming Aero—engine (Group) Corporation LTD.,Shenyang 110043
引用本文:

孙元,刘纪德,刘忠明,杨金侠,李金国,金涛,孙晓峰. 钴基钎料钎焊DD5单晶高温合金的接头微观组织演变与力学性能研究[J]. 金属学报, 2013, 49(12): 1581-1589.
SUN Yuan, LIU Jide, LIU Zhongming, YANG Jinxia, LI Jinguo, JIN Tao, SUN Xiaofeng. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF DD5 SINGLE CRYSTAL SUPERALLOY JOINT BRAZED BY Co—BASED FILLER ALLOY[J]. Acta Metall Sin, 2013, 49(12): 1581-1589.

全文: PDF(5874 KB)  
摘要: 

利用SEM, EPMA和TEM, 观察了在1453 K Co—Ni—Si—B钎料钎焊的DD5镍基单晶高温合金接头的显微组织,分析保温时间变化对接头显微组织和力学性能的影响, 并深入讨论接头的形成机制.结果表明: 接头主要由钎料合金区、界面连接区和元素扩散区3个区域组成.钎料合金区位于焊缝中央, 由Ni—Co固溶体、M3B2型硼化物、CrB和Ni—Si化合物构成;与之相邻为界面连接区, 主要为等温凝固形成的Ni—Co固溶体组织;元素扩散区位于界面连接区与母材之间, 由γ相、γ′相和元素互扩散形成的颗粒状M3B2构成. 随着保温时间的延长,焊接缺陷减少, 界面连接区厚度增加, 钎料合金区中球形Ni—Co固溶体尺寸增大,脆性化合物相数量减少, 接头在1143 K的抗拉强度由198.5 MPa提高至580 MPa.高温拉伸试样的断口观察表明: 断裂发生在焊缝处, 为混合断裂模式,保温时间延长可提高焊缝与母材的界面结合强度, 控制脆性化合物相的形成,改善接头的高温力学性能. 综合考虑接头的组织和性能, 最佳保温时间约为180 min.

关键词 钎焊单晶高温合金钴基钎料微观组织力学性能    
Abstract

The single crystal supperalloy DD5 was brazed using Co—Ni—Si—B filler alloy at  1453 K. The microstructure of joint and effect of brazing time on the microstructure and mechanical properties were investigated by SEM, EPMA and TEM. The formation mechanism of joint was discussed deeply. The result indicates that three distinct regions can be identified in a joint: the filler alloy zone, interfacial bonding zone, element diffusion zone. The filler alloy zone in the center of joint consists of Ni—Co solid solution, M3B2—type boride, CrB and Ni—Si compounds. The interfacial bonding zone adjacent to the filler alloy zone is composed of Ni—Co solid solution formed isothermally at brazing temperature. The element diffusion zone between the interfacial bonding zone and substrate consists of γ phase, γ′ phase and granular M3B2 phase which was formed in element diffusion. With extending brazing time, the brazing defects reduce, the thickness of bonding layer and the size of spherical Ni—Co solid solution in the filler alloy zone increase, and the brittle compounds reduce. The tensile strength at 1143 K increases from 198.5 MPa to 580 MPa. The investigation on fracture of high temperature tensile specimens exhibits that the fracture occurred in the seam and the fractural model is a mixed fracture. Through extending brazing time the bonding strength between seam and substrate can be improved, the brittle compounds can be controlled and the mechanical properties of joint are improved. The analysis results of microstructure and properties also imply that the optimum holding time would be 180 min.

Key wordsBrazing    single crystal superalloy    Co—based filler alloy    microstructure    mechanical properties
收稿日期: 2013-07-12     
基金资助:

国家重点基础研究发展计划项目 2010CB631200和2010CB631206,以及国家自然科学基金项目50904059, 51071165, 51001103和51204156资助

作者简介: 孙元, 女, 1980年生, 博士

[1] Guo J T.  Material Science and Engineering for Superalloys, Preparation Technology.Beijing: Science Press, 2008: 452

(郭建亭. 高温合金材料学, 制备工艺. 北京: 科学出版社, 2008: 452)
[2] Zhang X L, Zhou Y Z, Jin T, Sun X F.  Acta Metall Sin, 2012; 48: 1229
(张小丽, 周亦胄, 金涛, 孙晓峰. 金属学报, 2012; 48: 1229)
[3] Tung S K, Lim L C, Lai M O.  Scr Mater, 1996; 34: 763
[4] Guo L J, Li H J, Guo C, Li K Z, Feng T.  Rare Met Mater Eng, 2011; 40: 2088
[5] Pouranvari M, Ekrami A, Kokabi A H.  J Alloys Compd, 2008; 461: 641
[6] Liu W P, Zhuang H S.  Acta Metall Sin, 1995; 31: 539
(刘伟平, 庄鸿寿. 金属学报, 1995; 31: 539)
[7] Wu N, Li Y J, Wang J, Puchkov U A.  J Mater Process Tech, 2012; 212: 794
[8] Chen B, Xiong H P, Mao W, Cheng Y Y, Li X H.  Acta Metall Sin, 2008; 44: 1260
(陈波, 熊华平, 毛唯, 程耀永, 李晓红. 金属学报, 2008; 44: 1260)
[9] Wu X W, Chandel R S, Lia H, Seowa H P, Wu S C.  J Mater Process Tech, 2000; 104: 34
[10] Cao J, Song X G, Zheng Z J, Feng J C.  Trans China Weld Inst, 2011; 32(7): 13
(曹健, 宋晓国, 郑祖金, 冯吉才. 焊接学报, 2011; 32(7): 13)
[11] MacDonald W D, Eagar T W.  Annu Rev Mater Sci, 1992; 22: 23
[12] Li X H, Mao W, Guo W L, Xie Y H.  Trans China Weld Inst, 2005, 26(4): 51
(李晓红, 毛唯, 郭万林, 谢永慧. 焊接学报, 2005, 26(4): 51)
[13] Li W, Jin T, Sun X F, Guan H R, Hu Z Q.  Acta Metall Sin, 2001; 37: 1166
(李文, 金涛, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2001; 37: 1166)
[14] Li W, Jin T, Sun X F, Guo Y, Guan H R, Hu Z Q.  Scr Mater, 2003; 48: 1283
[15] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.  Mater Charact, 2011; 62: 545
[16] Liu J D.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
(刘纪德. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[17] Zhou Y, Mao W, Li X H.  J Mater Eng, 2007; (5): 3
(周媛, 毛唯, 李晓红. 材料工程, 2007; (5): 3)
[18] Neumeier S, Dinkel M, Pyczak F, Goken M.  Mater Sci Eng, 2011; A528: 815
[19] Rabinkin A.  Sci Tech Weld Join, 2004; 9: 181
[20] Ou C L, Liaw D W, Du Y C, Shiue R K.  J Mater Sci, 2006; 41: 6353
[21] Tatsuya T, Kazumasa N, Hiroshi O, Mitsuhiro H.  Calphad, 2003; 27: 161
[22] Datta M K, Pabi S K, Murty B S.  Mater Sci Eng, 2000; A284: 219
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[11] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[14] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.