Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1521-1531    DOI: 10.3724/SP.J.1037.2013.00214
  论文 本期目录 | 过刊浏览 |
单晶高温合金螺旋选晶过程的数值模拟与实验研究:II螺旋段
张航1),许庆彦1),孙长波2),戚翔1),唐宁1),柳百成1)
1) 清华大学材料学院先进成形制造教育部重点实验室, 北京 100084
2) 沈阳黎明航空发动机(集团)有限责任公司, 沈阳 110043
SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE  CRYSTAL SUPERALLOY :II. Spiral Part
ZHANG Hang1), XU Qingyan1), SUN Changbo2), QI Xiang1),TANG Ning1), LIU Baicheng 1)
1) Key Laboratory for Advanced Materials Processing Technology, Ministry of Education,School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) Shenyang Liming Aero—Engine Group Corporation Ltd., Shenyang 110043
引用本文:

张航,许庆彦,孙长波,戚翔,唐宁,柳百成. 单晶高温合金螺旋选晶过程的数值模拟与实验研究:II螺旋段[J]. 金属学报, 2013, 49(12): 1521-1531.
ZHANG Hang, XU Qingyan, SUN Changbo, QI Xiang, TANG Ning, LIU Baicheng. SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE  CRYSTAL SUPERALLOY :II. Spiral Part[J]. Acta Metall Sin, 2013, 49(12): 1521-1531.

全文: PDF(4316 KB)  
摘要: 

研究了螺旋段在选晶过程中的作用. 基于金相及EBSD实验结果, 指出在晶粒竞争生长过程中,晶粒二次臂取向和初始位置分布特征综合决定了晶粒的竞争优势.总结提出了选晶过程的两个几何限制机理:水平方向的二次臂竞争促进作用和竖直方向的一次臂限制作用.两种模型成功解释了螺旋段对选晶过程的作用. 采用修正的元胞自动机(MCA)技术,对螺旋段的晶粒竞争生长过程进行了模拟.研究了晶粒结构及晶体取向随定向凝固过程的变化规律, 并与实验结果进行了对比,两者吻合较好. 基于模拟与实验的研究,获得了螺旋参数对选晶行为的影响规律及作用机理, 提出了选晶器螺旋段的设计准则.

关键词 数值模拟选晶行为晶粒取向EBSD    
Abstract

The spiral selector is the key part for producing single crystal (SX) blades and ensures the integrity of crystal, which mainly includes starter block and spiral part. In this work, the influence of spiral part on the grain selection process was studied. Both of the metallography results and EBSD results proved that the prior location and the special orientation of the second dendrite arms were important for thegrains competitive growth during the directional solidification process. Based on the experimental results, two geometrical restrict mechanisms of grain selection were proposed. They were the competitive stimulating effect on the second dendrite arms in horizontal direction, which was resulted from the spiral arc shape, and the growing blocking effect on the primary dendrites in vertical direction, which was resulted from the take—off angle of the spiral part. These models could successfully explain the grain selecting effects of the spiral part. The modified cellular automaton  (MCA) technology was used to simulate the grains' competitive growth in spiral part. The changes of grains structure and orientation as the grain growing on were studied. The simulated and experimental results were compared and agreed well. Based on the simulated and experimental results, Influences of structural parameters on the grain selection behavior were proposed. The criteria for designing spiral part were also presented.

Key wordsnumerical simulation    grain selection behavior    grain orientation    EBSD
收稿日期: 2013-04-25     
基金资助:

国家重点基础研究发展计划项目2011CB706801, 国家自然科学基金项目51171089,以及国家科技重大专项项目2011ZX04014—052和2012ZX04012—011资助

作者简介: 张航, 男, 1985年生, 博士生

[1] Goulette M J, Spilling P D, Arthey R P. In: Kortovich C S, Bricknell R H,eds.,  Superalloys 1984, Warrendale, PA: TMS, 1984: 167

[2] Kurz W, Fisher D J, translated by Mao X M, Bao G Q.  Fundamentals of Solidification. Xi'an: Northwestern Polytechnical University Press, 1987: 20
(Kurz W, Fisher D J著, 毛协民, 包冠乾 译. 凝固原理. 西安: 西北工业大学出版社, 1987: 20)
[3] Glicksman M E.  Principles of Solidification an Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer Science Business Media, 2011: 305
[4] Kurz W, Fisher D J.  Acta Mater, 1981; 29: 11
[5] Kurz W, Giovanola B, Trivedi R.  Acta Metall, 1986; 34: 823
[6] Oldfield W.  Mater Sci Eng, 1973; 11: 211
[7] Reed R C.  The Superalloys Fundamentals and Applications. Cambridge, UK:Cambridge University Press, 2006: 121
[8] Shi C X, Zhong Z Y.  Acta Metall Sin, 2010; 46: 1281
(师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[9] Gandin C A, Rappaz M, Tintillier R.  Metall Mater Trans, 1994; 25A: 629
[10] Gandin C A, Rappaz M.  Acta Mater, 1997; 45: 2187
[11] Gandin C A, Rappaz M.  Acta Metall Mater, 1994; 42: 2233
[12] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P.  Metall Mater Trans, 1999; 30A: 3153
[13] Rappaz M, Gandin C A.  Acta Metall Mater, 1993; 41: 345
[14] Tang N, Xu Q Y, Liu B C.  Spec Cast Nonferrous Alloys, 2011; 31: 1028
(唐宁, 许庆彦, 柳百成. 特种铸造及有色合金, 2011; 31: 1028)
[15] Pan D, Xu Q Y, Liu B C.  Acta Metall Sin, 2010; 46: 294
(潘冬, 许庆彦, 柳百成. 金属学报, 2010; 46: 294)
[16] Yu J, Xu Q Y, Cui K, Liu B C.  Acta Metall Sin, 2007; 43: 731
(于靖, 许庆彦, 崔锴, 柳百成. 金属学报, 2007; 43: 731)
[17] Guo Y G, Li S M, Liu L, Fu H Z.  Acta Metall Sin, 2008; 44: 365
(郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)
[18] Shan F W, Huang W D, Lin X, Wei L.  Acta Metall Sin, 2008; 44: 1042
(单博炜, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 44: 1042)
[19] Liu B C.  China Mechan Eng, 2000; 11: 76
(柳百成. 中国机械工程, 2000; 11: 76)
[20] Zhang H, Xu Q Y, Tang N, Pan D, Liu B C.  Sci China  (Engl Lett), 2011; 54E: 3191
[21] Carter P, Cox D C, Gandin C A, Reed R C.  Mater Sci Eng, 2000; A280: 233
[22] Esaka H, Shinozuka K, Tamura M.  Mater Sci Eng, 2005; A413: 151
[23] Epishin A I, Nolze G.  Cryst Rep, 2006; 51: 710
[24] Seo S M, Kim I S, Lee J H, Jo C Y, Miyahara H, Ogi K.  Met Mater Int, 2009; 15: 391
[25] Pan D.  PhD Dissertation, Tsinghua University, Beijing, 2010
(潘冬. 清华大学博士学位论文, 北京, 2010)
[26] Pan D, Xu Q Y, Liu B C, Li J R, Yuan H L, Jin H P.  JOM, 2010; 62(5): 30
[27] Dai H J, D'Souza N, Dong H B.  Metall Mater Trans, 2011; 42A: 3430
[28] Dai H J, Dong H B, D'Souza N.  Metall Mater Trans, 2011; 42A: 3439
[29] Dai H J, Gebelin J, Newell M, Reed R C, D'Souza N, Brown P D, Dong H B.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S R, eds.,  Superalloy 2008, Warrendale, PA: TMS, 2008: 367
[30] Jiang L, Li S, Han Y.  Procedia Eng, 2012; 27: 1135
[31] Meng X, Li J, Jin T, Sun X, Sun C, Hu Z.  J Mater Sci Technol, 2011; 27: 118
[32] Meng X B, Lu Q, Zhang X L, Li J G, Chen Z Q, Wang Y H, Zhou Y Z, Jin T,Sun X F, Hu Z Q.  Acta Mater, 2012; 60: 3965
[33] Gao S F, Liu L, Wang N, Zhao X B, Zhang J, Fu H Z.  Acta Metall Sin, 2011; 47: 1251
(高斯峰, 刘林, 王柠, 赵新宝, 张军, 傅恒志. 金属学报, 2011; 47: 1251)
[34] Liang Z J.  PhD Dissertation, Tsinghua University, Beijing, 2003
(梁作俭. 清华大学博士学位论文, 北京, 2003)
[35] Editorial Committee.  Practical Handbook of Engineering Materials.
2nd Ed., Beijing: China Standards Press, 2002: 771

(丛书编委会. 工程材料实用手册. 第2版, 北京:中国标准出版社, 2002: 771)

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[8] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[11] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[12] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[13] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[14] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[15] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.