Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 682-688    DOI: 10.3724/SP.J.1037.2012.00735
  论文 本期目录 | 过刊浏览 |
Co-Sb合金定向凝固组织与相选择
孙洪元,李双明,冯松科,傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURE AND PHASE SELECTION IN DIRECTIONAL SOLIDIFICATION OF Co-Sb ALLOY
SUN Hongyuan, LI Shuangming, FENG Songke, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

孙洪元,李双明,冯松科,傅恒志. Co-Sb合金定向凝固组织与相选择[J]. 金属学报, 2013, 49(6): 682-688.
SUN Hongyuan, LI Shuangming, FENG Songke, FU Hengzhi. MICROSTRUCTURE AND PHASE SELECTION IN DIRECTIONAL SOLIDIFICATION OF Co-Sb ALLOY[J]. Acta Metall Sin, 2013, 49(6): 682-688.

全文: PDF(2882 KB)  
摘要: 

对Co-93.0%Sb(质量分数)合金进行了Bridgman定向凝固和激光快速凝固实验,利用XRD, SEM和EDS分析了合金凝固组织中的相组成和成分分布.结果表明, 在Bridgman定向凝固速率为2和5μm/s时, 合金凝固组织只有CoSb3和Sb 2相;而当凝固速率为20, 50, 100和500 μm/s时, 组织由初生相CoSb2, 包晶相CoSb3和Sb相组成,凝固组织中CoSb3体积分数随凝固速率的增加而减少. 激光快速凝固方法中, 当扫描速率为5 mm/s时,组织有CoSb2, CoSb3Sb 3相; 而当扫描速率增大到10, 20和50 mm/s时,包晶相CoSb3取代初生相CoSb2直接析出, 合金凝固组织只有CoSb3Sb 2相,根据凝固理论计算得出, 包晶相直接析出的临界速率为7.61 mm/s, 与实验结果相吻合.另外, 低定向凝固速率2-5 μm/s下获得CoSb3是因为有足够的凝固时间促进包晶反应进行,而激光快速凝固下, 凝固速率大于10 mm/s时, CoSb3是通过液相直接凝固获得的.要获得大体积分数的CoSb3, 需采用较低的定向凝固速率.

关键词 Co-Sb合金定向凝固包晶组织热电材料CoSb3    
Abstract

The compound CoSb3 is one kind of thermoelectric material that has been received more attention due to its potential application in green refrigeration and power generation. The general way to prepare CoSb3 material is sintering and the solidification behavior of CoSb3 compound is rarely reported, since this compound is obtained through the peritectic reaction, and there exists phase competitive growth in solidification process. In this work, Bridgman directional solidification and laser rapid solidification experiments on Co-93.0%Sb (mass fraction) alloy were carried out. XRD, SEM and EDS were employed to determine the solidified phases and characterize the microstructure. The results showed that for Bridgman directional solidification, the solidification microstructure of Co-93.0%Sb alloy contained only the CoSb3 and Sb phases at the solidification rates of 2 and 5 μm/s, whereas at the solidification rates of 20, 50, 100 and 500 μm/s, the microstructure contained CoSb3, CoSb2 and Sb phases. Furthermore, the volume fraction of CoSb3 phase decreased with increasing solidification rate. For laser rapid solidification, the solidification microstructure consisted of CoSb3, CoSb2 and Sb phases at the scanning rate of 5 mm/s. As the scanning rate ranging from 10 to 50 mm/s, the microstructure is composed of only CoSb3 and Sb phases. The critical rate of peritectic phaseCoSb3 instead of primary CoSb2 solidified directly from the melt was theoretically predicted to 7.61 mm/s, agreeing well with the experiment result. In addition, the formation mechanisms of peritectic phase CoSb3 at Bridgeman directional solidification and laser rapid solidification were analysed. The formation of peritectic phase at low solidification rates was due to the local solidification time available for the peritectic reaction, and at high solidification rates higher than 10 mm/s the peritectic phase CoSb3 was obtained directly from the melt. Therefore to obtain a large volume fraction of peritectic phase CoSb3,  a low solidification rate is recommended.

Key wordsCo-Sb alloy    directional solidification    peritectic, microstructure    thermoelectric material    CoSb3
收稿日期: 2012-12-18     
基金资助:

国家自然科学基金项目50971101和51074127资助

作者简介: 孙洪元, 男, 1989年生, 硕士生

[1] Disalvo F J.  Science, 1999; 285: 703

[2] Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G.  Nat Mater, 2011; 10: 532
[3] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A,Vashaee D, Chen X Y, Liu J, Dresselhaus M S, Chen G, Ren Z F.  Science, 2008; 320: 634
[4] Snyder G J, Christensen M, Nishibori E, Caillat T, Iversen B B.  Nat Mater, 2004; 3:458
[5] Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G.  J Appl Phys, 2010; 107:094308
[6] Nagamoto Y, Tanaka K, Kyanagi T. In:  proc 17th Int Conf on Thermoelectrics, New York: IEEE Service Center, 1998: 302
[7] Xiong Z, Chen X, Huang X, Bai S, Chen L.  Acta Mater, 2010; 58: 3995
[8] Tang X, Zhang Q.  J Appl Phys, 2005; 97: 093712
[9] Tang X F, Zhang L M, Yuan R Z.  J Mater Res, 2001; 16: 3343
[10] Slack G A.  Thermoelectric Handbook. Boca Raton London: CRC, 1995: 407
[11] Caillat T, Fleurial J P, Borshchevsky A.  J Cryst Growth, 1996; 166: 722
[12] Akasaka M, Iida T, Sakuragi G, Furuyama S, Noda M, Matsui S, Ota M, Suzuki H, Sato H, Takanashi Y, Sakuragi S.  J Alloys Compd, 2005; 386: 228
[13] Takizawa H, Miura K, Masayuki Ito, Suzuki T, Endo T.  J Alloys Compd, 1999; 282: 79
[14] Sales B C, Mandrus D, Williams R K.  Science, 1996; 272: 1325
[15] Yu B L, Tang X F, Qi Q, Zhang Q J.   Acta Phys Sin, 2004; 53: 3130
(余柏林, 唐新峰, 祁琼, 张清杰. 物理学报, 2004, 53: 3130)
[16] Furuyama S, Iida T, Matsui S, Akasaka M, Nishio K, Takanashi Y.J Alloys Compd, 2006; 415:251
[17] Ishida K, Hasebe M, Ohnishi N, Nishizawa T.J Less Common Met, 1985; 114: 361
[18] Kurz W, Fisher D J.Fundamentals of Solidification. 4th Ed., Switzerland: Trans Tech Publications, 1998:110
[19] Karma A, Rappel W J, Fuh B C, Trivedi R.  Metall Mater Trans, 1998; 29A: 1457
[20] Liu D M.  PhD Dissertation, Harbin Institute of Technology, 2012
(刘冬梅. 哈尔滨工业大学博士学位论文, 2012)
[21] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.  Intermetallics, 2005; 13: 267
[22] Kerr H W, Kurz W.  Int Mater Rev, 1996; 41: 129
[23] Lu H Y, Li S M, Zhong H, Liu L, Fu H Z.  Acta Metall Sin, 2008; 44: 843
(吕海燕, 李双明, 钟宏, 刘林, 傅恒志. 金属学报, 2008; 44: 843)
[24] Kurz W.  Adv Eng Mater, 2001; 3: 443
[25] Umeda T, Okane T, Kurz W.  Acta Mater, 1996, 44: 4209
[26] Stefanescu D M.Science and Engineering of Casting Solidification. 2nd Ed., New York: Springer, 2009: 186
 
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.