Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 457-463    DOI: 10.3724/SP.J.1037.2012.00729
  论文 本期目录 | 过刊浏览 |
Al70Bi11Sn19合金颗粒的核壳组织
张俊芳1),王予津2),卢温泉1),张曙光1),李建国1)
1) 上海交通大学材料科学与工程学院, 上海 200240
2) 上海交通大学机械与动力工程学院, 上海 200240
THE CORE-SHELL STRUCTURE OF Al70Bi11Sn19 IMMISCIBLE ALLOY PARTICLES
ZHANG Junfang1), WANG Yujin 2), LU Wenquan 1), ZHANG Shuguang 1), LI Jianguo 1)
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
 
全文: PDF(1477 KB)  
摘要: 

利用Al70Bi11Sn19难混溶合金, 基于相分离制备了Al/Sn-Bi核壳型颗粒. 利用SEM, EDS和DSC研究了颗粒的组织形貌、成分和相变行为, 并结合温度场模拟, 探讨了核壳形貌的形成机理. 结果表明,合金颗粒以具有良好导电导热性的铝合金为内核, 以Sn-Bi亚共晶无铅合金为壳层, 表现出两阶段熔化特征; 随粒径从0.5 mm增大到0.9 mm, 核壳形貌从多核月偏食型向单核同心型及月偏食型转变, 这是由于表面偏析、Marangoni和Stokes运动、Ostwald熟化以及冷速等多种因素相互竞争的综合作用.

关键词 Al-Bi-Sn合金难混溶合金核壳组织    
Abstract

Immiscible alloys are well suited as functional materials, such as bearings, electrical contacts,switches and superconductors, etc. They usually suffer from heavy segregation under ordinary casting, which is resulted from the decomposition within the miscibility gap of a homogeneous liquid into two immiscible liquids generally with distinct density difference. But this characteristic provides an opportunity to in situ fabricate composites with core-shell morphology. In this study, Al/Sn-Bi core-shelled particles have been successfully prepared by phase separation of Al70Bi11Sn19 alloy. The morphology, microstructure, composition and phase transformation of the core-shelled particles were investigated by means of SEM, EDS and DSC. It reveals that the particle comprises an Al-rich core with a Sn-Bi hypoeutectic shell, displaying a two-stage melting characteristic. The morphology of particles varies with size. With increasing the particle size from 0.5 mm to 0.9 mm, the core-shell morphology turns from a crescent multi-core type into concentric or eccentric single-core types. Based on the simulation of temperature field of Al70Bi11Sn19 alloy droplets during solidification, the formation mechanism of the core-shell morphology has been discussed in detail, which is attributed to an outcome of the competition among the surface segregation, Marangoni and Stokes motions, Ostwald ripening and cooling rate.

Key wordsAl-Bi-Sn alloy    immiscible alloy    core-shell    structure
收稿日期: 2012-12-10     
基金资助:

国家自然科学基金项目51027005和高等学校博士学科点专项科研基金项目20110073110005资助

通讯作者: 张曙光     E-mail: sgzhang@sjtu.edu.cn
作者简介: 张俊芳, 女, 1987年生, 硕士生

引用本文:

张俊芳,王予津,卢温泉,张曙光,李建国. Al70Bi11Sn19合金颗粒的核壳组织[J]. 金属学报, 2013, 29(4): 457-463.
ZHANG Junfang, WANG Yujin, LU Wenquan, ZHANG Shuguang, LI Jianguo. THE CORE-SHELL STRUCTURE OF Al70Bi11Sn19 IMMISCIBLE ALLOY PARTICLES. Acta Metall Sin, 2013, 29(4): 457-463.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00729      或      https://www.ams.org.cn/CN/Y2013/V29/I4/457

[1] Ratke L, Diefenbach S.  Mater Sci Eng, 1995; R15: 263


[2] Xie H, Yang G C, La P Q, Hao W X, Fan J F, Liu W M, Xu L J.  Mater Charact, 2004; 52: 153

[3] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.  Science, 2002; 297: 990

[4] Ohnuma I, Saegusa T, Takaku Y, Wang C P, Liu X J, Kainuma R, Ishida K.  J Electron Mater, 2009; 38: 2

[5] Jia J, Zhao J Z, Guo J J, Liu Y.  Immiscible Alloy and Preparation Technology.Harbin: Harbin Institute of Technology Press, 2002: 1

(贾均, 赵九洲, 郭景杰, 刘源. 难混溶合金及其制备技术. 哈尔滨: 哈尔滨工业大学出版社, 2002: 1)

[6] Wang C P, Liu X J, Takaku Y, Ohnuma I, Kainuma R, Ishida K.  Metall Mater Trans, 2004; 35A: 1243

[7] Wang C P, Liu X J, Shi R P, Shen C, Wang Y, Ohnuma I, Kainuma R, Ishida K.  Appl Phys Lett, 2007; 91: 141904

[8] Dai R R, Zhang S G, Guo X, Li J G.  Mater Lett, 2011; 65: 322

[9] Dai R R, Zhang S G, Guo X, Li J G.  J Electron Mater, 2011; 40: 2458

[10] Dai R R, Zhang S G, Guo X, Li J G.  J Alloys Compd, 2011; 509: 2289

[11] Wilde G, Perepezko J H.  Acta Mater, 1999; 47: 3009

[12] Li H L, Zhao J Z, He J.  Acta Metall Sin, 2007; 43: 659

(李海丽, 赵九洲, 何杰. 金属学报, 2007; 43: 659)

[13] Li Y S.  PhD Dissertation, Hunan University, Changsha, 2007

(李元山. 湖南大学博士学位论文, 长沙, 2007)

[14] Grobner J, Schmid-Fetzer R.  J Met, 2005; 57: 19

[15] Grobner J, Mirkovic D, Schmid-Fetzer R.  Acta Mater, 2005; 53: 3271

[16] Kaban I, Hoyer W.  Phys Rev, 2008; 77B: 125426

[17] Young N O, Goldstein J S, Block M J.  J Fluid Mech, 1959; 6: 350

[18] Ratke L, Voorhees P W.  Growth and Coarsening. New York: Springer-Verlag, 2002: 1


[20] Wakitani S.  J Phys: Conf Ser, 2007; 64: 012006

[21] Davis R H.  Int J Thermophys, 1986; 7: 609

[22] Zhang H W, Xian A P.  Acta Metall Sin, 2000; 36: 347

(张宏闻, 冼爱平. 金属学报, 2000; 36: 347)

[23] Qin T, Wang H P, Wei B B.  Sci China, 2007; 37G: 409

(秦涛, 王海鹏, 魏炳波. 中国科学, 2007; 37G: 409)

[24] Xu Z, Yao S S.  Theories of Materials Processing. Beijing: Science Press, 2003: 40

(徐洲, 姚寿山. 材料加工原理. 北京: 科学出版社, 2003: 40)

[25] Martin J W, Doherty R D, translated by Li X L.  Stability of Microstructure in Metallic Systems.Beijing: Science Press. 1984: 194

(Martin J W, Doherty R D著, 李新立 译. 金属系中显微结构的稳定性. 北京:科学出版社, 1984: 194)

[26] Shi R P, Wang C P, Wheeler D, Liu X J, Wang Y.  Acta Mater, 2013; 61: 1229
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[3] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[4] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[9] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[10] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[11] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[12] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[13] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[14] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[15] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.