Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 457-463    DOI: 10.3724/SP.J.1037.2012.00729
  论文 本期目录 | 过刊浏览 |
Al70Bi11Sn19合金颗粒的核壳组织
张俊芳1),王予津2),卢温泉1),张曙光1),李建国1)
1) 上海交通大学材料科学与工程学院, 上海 200240
2) 上海交通大学机械与动力工程学院, 上海 200240
THE CORE-SHELL STRUCTURE OF Al70Bi11Sn19 IMMISCIBLE ALLOY PARTICLES
ZHANG Junfang1), WANG Yujin 2), LU Wenquan 1), ZHANG Shuguang 1), LI Jianguo 1)
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
 
引用本文:

张俊芳,王予津,卢温泉,张曙光,李建国. Al70Bi11Sn19合金颗粒的核壳组织[J]. 金属学报, 2013, 29(4): 457-463.
ZHANG Junfang, WANG Yujin, LU Wenquan, ZHANG Shuguang, LI Jianguo. THE CORE-SHELL STRUCTURE OF Al70Bi11Sn19 IMMISCIBLE ALLOY PARTICLES[J]. Acta Metall Sin, 2013, 29(4): 457-463.

全文: PDF(1477 KB)  
摘要: 

利用Al70Bi11Sn19难混溶合金, 基于相分离制备了Al/Sn-Bi核壳型颗粒. 利用SEM, EDS和DSC研究了颗粒的组织形貌、成分和相变行为, 并结合温度场模拟, 探讨了核壳形貌的形成机理. 结果表明,合金颗粒以具有良好导电导热性的铝合金为内核, 以Sn-Bi亚共晶无铅合金为壳层, 表现出两阶段熔化特征; 随粒径从0.5 mm增大到0.9 mm, 核壳形貌从多核月偏食型向单核同心型及月偏食型转变, 这是由于表面偏析、Marangoni和Stokes运动、Ostwald熟化以及冷速等多种因素相互竞争的综合作用.

关键词 Al-Bi-Sn合金难混溶合金核壳组织    
Abstract

Immiscible alloys are well suited as functional materials, such as bearings, electrical contacts,switches and superconductors, etc. They usually suffer from heavy segregation under ordinary casting, which is resulted from the decomposition within the miscibility gap of a homogeneous liquid into two immiscible liquids generally with distinct density difference. But this characteristic provides an opportunity to in situ fabricate composites with core-shell morphology. In this study, Al/Sn-Bi core-shelled particles have been successfully prepared by phase separation of Al70Bi11Sn19 alloy. The morphology, microstructure, composition and phase transformation of the core-shelled particles were investigated by means of SEM, EDS and DSC. It reveals that the particle comprises an Al-rich core with a Sn-Bi hypoeutectic shell, displaying a two-stage melting characteristic. The morphology of particles varies with size. With increasing the particle size from 0.5 mm to 0.9 mm, the core-shell morphology turns from a crescent multi-core type into concentric or eccentric single-core types. Based on the simulation of temperature field of Al70Bi11Sn19 alloy droplets during solidification, the formation mechanism of the core-shell morphology has been discussed in detail, which is attributed to an outcome of the competition among the surface segregation, Marangoni and Stokes motions, Ostwald ripening and cooling rate.

Key wordsAl-Bi-Sn alloy    immiscible alloy    core-shell    structure
收稿日期: 2012-12-10     
基金资助:

国家自然科学基金项目51027005和高等学校博士学科点专项科研基金项目20110073110005资助

作者简介: 张俊芳, 女, 1987年生, 硕士生

[1] Ratke L, Diefenbach S.  Mater Sci Eng, 1995; R15: 263


[2] Xie H, Yang G C, La P Q, Hao W X, Fan J F, Liu W M, Xu L J.  Mater Charact, 2004; 52: 153

[3] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.  Science, 2002; 297: 990

[4] Ohnuma I, Saegusa T, Takaku Y, Wang C P, Liu X J, Kainuma R, Ishida K.  J Electron Mater, 2009; 38: 2

[5] Jia J, Zhao J Z, Guo J J, Liu Y.  Immiscible Alloy and Preparation Technology.Harbin: Harbin Institute of Technology Press, 2002: 1

(贾均, 赵九洲, 郭景杰, 刘源. 难混溶合金及其制备技术. 哈尔滨: 哈尔滨工业大学出版社, 2002: 1)

[6] Wang C P, Liu X J, Takaku Y, Ohnuma I, Kainuma R, Ishida K.  Metall Mater Trans, 2004; 35A: 1243

[7] Wang C P, Liu X J, Shi R P, Shen C, Wang Y, Ohnuma I, Kainuma R, Ishida K.  Appl Phys Lett, 2007; 91: 141904

[8] Dai R R, Zhang S G, Guo X, Li J G.  Mater Lett, 2011; 65: 322

[9] Dai R R, Zhang S G, Guo X, Li J G.  J Electron Mater, 2011; 40: 2458

[10] Dai R R, Zhang S G, Guo X, Li J G.  J Alloys Compd, 2011; 509: 2289

[11] Wilde G, Perepezko J H.  Acta Mater, 1999; 47: 3009

[12] Li H L, Zhao J Z, He J.  Acta Metall Sin, 2007; 43: 659

(李海丽, 赵九洲, 何杰. 金属学报, 2007; 43: 659)

[13] Li Y S.  PhD Dissertation, Hunan University, Changsha, 2007

(李元山. 湖南大学博士学位论文, 长沙, 2007)

[14] Grobner J, Schmid-Fetzer R.  J Met, 2005; 57: 19

[15] Grobner J, Mirkovic D, Schmid-Fetzer R.  Acta Mater, 2005; 53: 3271

[16] Kaban I, Hoyer W.  Phys Rev, 2008; 77B: 125426

[17] Young N O, Goldstein J S, Block M J.  J Fluid Mech, 1959; 6: 350

[18] Ratke L, Voorhees P W.  Growth and Coarsening. New York: Springer-Verlag, 2002: 1


[20] Wakitani S.  J Phys: Conf Ser, 2007; 64: 012006

[21] Davis R H.  Int J Thermophys, 1986; 7: 609

[22] Zhang H W, Xian A P.  Acta Metall Sin, 2000; 36: 347

(张宏闻, 冼爱平. 金属学报, 2000; 36: 347)

[23] Qin T, Wang H P, Wei B B.  Sci China, 2007; 37G: 409

(秦涛, 王海鹏, 魏炳波. 中国科学, 2007; 37G: 409)

[24] Xu Z, Yao S S.  Theories of Materials Processing. Beijing: Science Press, 2003: 40

(徐洲, 姚寿山. 材料加工原理. 北京: 科学出版社, 2003: 40)

[25] Martin J W, Doherty R D, translated by Li X L.  Stability of Microstructure in Metallic Systems.Beijing: Science Press. 1984: 194

(Martin J W, Doherty R D著, 李新立 译. 金属系中显微结构的稳定性. 北京:科学出版社, 1984: 194)

[26] Shi R P, Wang C P, Wheeler D, Liu X J, Wang Y.  Acta Mater, 2013; 61: 1229
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[12] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.