Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 236-242    DOI: 10.3724/SP.J.1037.2012.00548
  论文 本期目录 | 过刊浏览 |
含长周期结构Mg-(2, 3, 4)Y-1Zn合金的显微组织和力学性能
刘欢,薛烽,白晶,周健,孙扬善
东南大学材料科学与工程学院江苏省先进金属材料高技术研究重点实验室, 南京 211189
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(2, 3, 4)Y-1Zn ALLOYS WITH LONG PERIOD STACKING ORDERED STRUCTURE
LIU Huan, XUE Feng, BAI Jing, ZHOU Jian, SUN Yangshan
Jiangsu Key Lab for Advanced Metallic Materials, College of Materials Science and Engineering, Southeast University,Nanjing 211189
引用本文:

刘欢,薛烽,白晶,周健,孙扬善. 含长周期结构Mg-(2, 3, 4)Y-1Zn合金的显微组织和力学性能[J]. 金属学报, 2013, 49(2): 236-242.
LIU Huan, XUE Feng, BAI Jing, ZHOU Jian, SUN Yangshan. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(2, 3, 4)Y-1Zn ALLOYS WITH LONG PERIOD STACKING ORDERED STRUCTURE[J]. Acta Metall Sin, 2013, 49(2): 236-242.

全文: PDF(3188 KB)  
摘要: 

制备并研究了Mg-(2, 3, 4)Y-1Zn(原子分数, %)三元合金在铸态、退火、挤压和固溶处理时的显微组织和力学性能. 结果表明, 随着Y/Zn原子比的升高, 铸态合金的显微组织由WZ21和WZ31合金的两相组织(α-Mg+Mg12YZn)转变为WZ41合金的三相组织(α-Mg+Mg12YZn+Mg24Y5).其中Mg12YZn相连接成网状, 为18R-LPSO结构, Mg24Y5相分布于Mg12YZn相之间. 退火时, WZ21和WZ31合金中部分18R相溶解, 基体中析出大量14H-LPSO层片. 经过挤压, 18R-LPSO相沿挤压方向呈带状排列,退火析出的14H层片整体平动, 在α-Mg中仍相互平行. 固溶处理后, 18R相继续溶解, 14H相析出并长大. 此时, 随Y/Zn原子比升高, 合金中14-LPSO相体积分数增加. 3种合金挤压态的性能优于相应的铸态、退火态和固溶处理态, 随着Y含量的增加, 合金强度不断升高, 塑性下降, 挤压态WZ41合金在室温时抗拉强度达到350 MPa以上.

关键词 Mg-Y-Zn合金长周期堆垛有序结构退火挤压固溶处理    
Abstract

 

Recently, the Mg-Y-Zn alloy systems have received great attention due to their unique microstructures and excellent mechanical properties. Three kinds of ternary equilibrium Mg-Y-Zn phases have been reported in the systems: the W phase (Mg3Y2Zn3), the I phase (Mg3YZn6) and the X phase (Mg12YZn, long period stacking ordered (LPSO)structure). To further study the evolutions of LPSO structures in Mg-Y-Zn alloys, three Mg-(2, 3, 4)Y-1Zn (atomic fraction, %) ternary alloys were prepared by casting and extrusion. Based on the OM, SEM and TEM observations, the microstructures of the as-cast WZ21 and WZ31 alloys are mainly composed ofα-Mg and Mg12YZn duplex microstructures, while that of the as-cast WZ41 alloy consists of α-Mg,Mg12YZn and Mg24Y5 phases. The Mg12YZn phase which forms a network is a kind of 18R-LPSO structures and the Mg24Y5 phase is inclined to be located within 18R phases. During homogenization treatment, part of 18R phase dissolves and 14H lamellas are precipitated in the matrix of the WZ21 and WZ31 alloys. After extrusion, the 18R phases are aligned along the extrusion direction, whereas the 14H lamellas in the matrix are still parallel to each other. During solution treatment (T4), the 18R structures continue to dissolve and 14H lamellas further develop. With increase of the Y/Zn atomic ratio, the volume fraction of 14H-LPSO phase increases after T4 treatment. The mechanical properties for the extruded alloys are better than alloys in as-cast, as-annealed and T4-treated stages. With increasing Y content, the strength of the alloys increases, but the ductility decreases. Tensile strength of the extruded WZ41 alloy reaches 350 MPa at room temperature.
Key wordsMg-Y-Zn alloy    long period stacking ordered structure    annealing    extrusion    solution treatment
收稿日期: 2012-09-14     
基金资助:

江苏省自然科学基金资助项目BK2010392

作者简介: 刘欢, 男, 1987年生, 博士生

[1] Zhang J H, Leng Z, Liu S J, Li J Q, Zhang M L, Wu R Z. J Alloys Compd, 2011; 509: 7717


[2] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172

[3] Luo S Q, Tang A T, Pan F S, Song K, Wang W Q. Trans Nonferrous Met Soc China, 2011; 21: 795

[4] Wang J F, Song P F, Gao S, Huang X F, Shi Z Z, Pan F S. Mater Sci Eng, 2011; A528: 5914

[5] Liu K, Zhang J H, Lu H Y, Tang D X, Rokhlin L L, Elkin F M, Meng J. Mater Des, 2010; 31: 210

[6] Zhang S, Yuan G Y, Lu C, Ding W J. J Alloys Compd, 2011; 509: 3515

[7] Yin D D, Wang Q D, Gao Y, Chen C J, Zheng J. J Alloys Compd, 2011; 509: 1696

[8] Abe E, Kawamura Y, Hayashi K, Inoue A. Acta Mater, 2002; 50: 3845

[9] Zheng L, Liu C M, Wan Y C, Yang P W, Shu X. J Alloys Compd, 2011; 509: 8832

[10] Kawamura Y, Kasahara T, Izumi S, Yamasaki M. Scr Mater, 2006; 55: 453

[11] Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Scr Mater, 2004; 51: 107

[12] Li R G, Fang D Q, An J, Lu Y, Cao Z Y, Liu Y B. Mater Charact, 2009; 60: 470

[13] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y. Scr Mater, 2005; 53: 799

[14] Su Z G, Li R G, An J, Lu Y. J Mater Eng Perform, 2010; 19: 70

[15] Chen B, Lin D L, Zeng X Q, Lu C. J Alloys Compd, 2007; 440: 94

[16] Yoshimoto S, Yamasaki M, Kawamura Y. Mater Trans, 2006; 47: 959

[17] Wang J F, Gao S, Song P F, Huang X F, Shi Z Z, Pan F S. J Alloys Compd, 2011; 509: 8567

[18] Chen B, Lin D L, Zeng X Q, Lu C. J Mater Sci, 2010; 45: 2510

[19] Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y. Acta Mater, 2007; 55: 6798

[20] Zhu Y M, Weyland M, Morton A J, Oh-ishi K, Hono K, Nie J F. Scr Mater, 2009; 60: 980

[21] Zhu Y M, Morton A J, Nie J F. Acta Mater, 2010; 58: 2936

[22] Li D J, Zeng X Q, Dong J, Zhai C Q. Trans Nonferrous Met Soc China, 2008; 18: 117

[23] Zeng X Q, Wu Y J, Peng L M, Lin D L, Ding W J, Peng Y H. Acta Matell Sin, 2010; 46: 1041

(曾小勤, 吴玉娟, 彭立明, 林栋樑, 丁文江, 彭赢红. 金属学报, 2010; 46: 1041)

[24] Liu K, Zhang J F, Tang D X, Rokhlin L L, Elkin F M, Meng J. Mater Chem Phys, 2009; 117: 107

[25] Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda H Y, Umakoshi Y. Acta Mater, 2010; 58: 6282

[26] Shao X H, Yang Z Q, Ma X L. Acta Mater, 2010; 58: 4760
[1] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[2] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[3] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[5] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[6] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[7] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[9] 何长树, 郄默繁, 张志强, 赵骧. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响[J]. 金属学报, 2021, 57(12): 1614-1626.
[10] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[11] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[12] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[13] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[14] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[15] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.