Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 257-264    DOI: 10.3724/SP.J.1037.2012.00503
  论文 本期目录 | 过刊浏览 |
微观组织对共析钢室温加工硬化行为的影响
郑成思1,李龙飞1,杨王玥2,孙祖庆1
1) 北京科技大学新金属材料国家重点实验室, 北京 100083
2) 北京科技大学材料科学与工程学院, 北京 100083
INFLUENCE OF MICROSTRUCTURES OF EUTECTOIDSTEEL ON ROOM TEMPERATURE WORKHARDENING BEHAVIOR
ZHENG Chengsi1, LI Longfei1, YANG Wangyue2, SUN Zuqing1
1) The State Key Laboratory for Advanced Metals and Materials, University of Science& Technology Beijing, Beijing,100083
2) School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing 100083
全文: PDF(1027 KB)  
摘要: 

通过不同热机械处理工艺, 分别获得片层珠光体、球化珠光体、超细化(α+θ)复相组织以及细晶(α+θ)复相组织等4种不同组织的共析钢. 利用室温单轴拉伸实验、SEM和TEM等手段研究了上述组织对共析钢室温加工硬化行为的影响. 结果表明: 片层珠光体组织具有抗拉强度高、屈强比小且均匀延伸率低的特点, 这与其初始加工硬化率高、加工硬化率随应变量增加而下降的程度有直接关系. 其它3种铁素体/渗碳体粒子复相组织的初始加工硬化率较低, 但下降趋势较缓, 表现出较好的塑性变形能力.与球化珠光体相比, 组织细化使超细化(α+θ)复相组织和细晶(α+θ)复相组织具有更好的强度与塑性配合.

关键词 共析钢不同组织力学行为渗碳体粒子加工硬化    
Abstract

Steels with ultrafine (α+θ) duplex structure, consisting of ferrite matrix (α) with average grainsize of about 1μm and dispersed cementite particles (θ), have been investigated widely in recent years formaking better the work-hardening capability of ultrafine-grained steels. In fact, the ratio of yield strength to tensilestrength for plain carbon steels with ultrafine (α+θ) duplex structure is commonly larger than 0.85. Forstructural material, the low ratio of yield strength to tensile strength is beneficial to absorb external energy anddelay theoccurrence of destruction. However, the ratio of yield strength to tensile strength is still relatively high for steelswith ultrafine (α+θ) duplex structure to act as the structural material. Namely, the work-hardening capability ofultrafine (α+θ) duplex steel needs further improving. It could be feasible for improving the work-hardeningcapability of ultrafine (α+θ) duplex steel to change the form, size and distribution of the cementite. Therefore, it isnecessary to investigate the work--hardening behavior of steel with different cementite states. In the present research, four different microstructures of eutectoid steel were obtained by different thermo-mechanicaltreatments, i.e., lamellar pearlite, spheroidized pearlite, ultrafine (α+θ) duplex structure and fine-grained (α+θ)duplex structure. The effect of different microstructures on the room--temperature work-hardening behavior of theeutectoid steel was analyzed using room temperature tensile tests, SEM and TEM. The results indicated that thework-hardening characters of lamellar pearlite,which initial work hardening rate is large but decreases quickly with strain, have direct relationship with its large tensile strength, small yield ratio and low uniform elongation.Although the initial work hardening rates of the three ferrite/cementite particles duplex structures are lower, theydecrease much slowly with strain comparing with that of lamellar pearlite. Therefore, three types offerrite/cementite particles duplex structures demonstrate good plastic deformation capability. In comparison withspheroidized pearlite, ultrafine (α+θ) duplex structure and fine-grained (α+θ) duplex structure demonstrate better balance between strength and plasticity due to microstructure refinement.

Key wordseutectoidsteel    differentmicrostructure    mechanicalbehavior    cementite particle    work-hardening
收稿日期: 2012-08-24     
基金资助:

 

中央高校基础科研业务费项目FRF-TP-12-135A和新金属材料国家重点实验室自主课题资助
通讯作者: 李龙飞     E-mail: lilf@skl.ustb.edu.cn
作者简介: 郑成思, 男, 1986年生, 博士生

引用本文:

郑成思,李龙飞,杨王玥,孙祖庆. 微观组织对共析钢室温加工硬化行为的影响[J]. 金属学报, 2013, 49(3): 257-264.
ZHENG Chengsi1, LI Longfei1, YANG Wangyue2, SUN Zuqing1. INFLUENCE OF MICROSTRUCTURES OF EUTECTOIDSTEEL ON ROOM TEMPERATURE WORKHARDENING BEHAVIOR. Acta Metall Sin, 2013, 49(3): 257-264.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00503      或      https://www.ams.org.cn/CN/Y2013/V49/I3/257

[1]Howe AA.Mater SciTechnol, 2000; 16: 1264


[2]Jia D, Ramesh K T, Ma E.Acta Mater, 2003; 51: 3495

[3]Hazra S S, Pereloma E V, Gazder A A.Acta Mater, 2011; 59: 4015

[4]Gazder A A, Hazra S S, Pereloma E V.Mater SciEng, 2011; A530: 492

[5]Akio O, Shiro T, Kotobu N.ISIJ Int, 2004; 44: 1063

[6]Torizuka S, Muramatsu E, NarayanaMurty S V S, Nagai K.Scr Mater, 2006; 55: 751

[7]Zhao M C, Yin F X, Hanamura T, Nagai K, Atrens A.Scr Mater, 2007; 57: 857

[8]Maki T, Furuhara T.Mater Sci Forum, 2003; 426--432: 19

[9]Furuhara T, Mizoguchi T.ISIJ Int, 2004; 45: 392

[10]Song R, Ponge D, Raabe R.Scr Mater, 2005; 52: 1075

[11]Song R, Ponge D, Raabe R.Acta Mater, 2005; 53: 4881

[12]Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T.Scr Mater, 1999; 40: 675

[13]Park K T, Kim Y S, Lee J G, Shi D H.Mater SciEng, 2000; A293: 165

[14]Tsuji N, Ueji R, Minamino Y, Saito Y.Scr Mater, 2002; 46: 305

[15]Ueji R, Tsuji N, Minamino Y, Koizumi Y.Acta Mater, 2002; 50: 4177

[16]Park K T, Shin D H.Metall Mater Trans, 2002; 33A: 705

[17]Song R, Ponge D, Raabe D, Kaspar R.Acta Mater, 2005; 53: 845

[18]Tsuchida N, Masuda H, Harada Y, Fukaura K, Tomota Y, Nagai K.Mater SciEng, 2008; A488: 446

[19]Song R, Ponge D, Raabe D, Speer J G, Matlock D K.Mater SciEng, 2006; A441: 1

[20]Yoda R, Shibata K, Morimitsu T, Terada D, Tsuji N.Scr Mater, 2011; 65: 175

[21]Syn C K, Lesuer D, Sherby O D.Metall Mater Trans, 1994; 25A: 1481

[22]Chen W, Li L F, Yang W Y, Sun Z Q, He J P.ActaMetall Sin, 2009; 45: 151

(陈伟, 李龙飞, 杨王玥, 孙祖庆, 何建平. 金属学报, 2009; 45: 151)

[23]Huang Q S, Li L F, Yang W Y, Sun Z Q.ActaMetall Sin, 2007; 43: 724

(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)

[24]Oyama T, Sherby O D, Wadsworth J, Walser B.ScrMetall, 1984; 18: 799

[25]Dollar M, Bernstein I M, Thompson A W.ActaMetall, 1988; 36: 311

[26]Ray K K, Mondal D.ActaMetall Mater, 1991; 39: 2201

[27]Ashby M F.Philos Mag, 1970; 21: 399

[28]Kuhlmann-Wilsdorf D.Philos Mag, 1999; 79: 955

[1] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[2] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[3] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[4] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[5] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[6] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[7] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[8] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[9] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
[10] 金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
[11] 马广财, 付华萌, 王峥, 许庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[12] 邓德安, KIYOSHIMA Shoichi. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响*[J]. 金属学报, 2014, 50(5): 626-632.
[13] 莫永达, 姜雁斌, 刘新华, 谢建新. 柱状晶组织HAl77-2铝黄铜的力学性能与加工硬化行为[J]. 金属学报, 2014, 50(11): 1367-1376.
[14] 赵征志, 佟婷婷, 赵爱民, 何青, 董瑞, 赵复庆. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J]. 金属学报, 2014, 50(10): 1153-1162.
[15] 李俊杰, Godfrey Andrew, 刘伟, 张弛. 连续加热条件下过共析钢奥氏体化研究[J]. 金属学报, 2014, 50(10): 1179-1188.