Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1446-1452    DOI: 10.3724/SP.J.1037.2012.00307
  论文 本期目录 | 过刊浏览 |
挤压AZ31B镁合金多轴疲劳寿命预测
熊缨1,2,程利霞1
1. 浙江工业大学机械工程学院, 杭州 310032
2. 浙江工业大学特种装备制造与先进加工技术教育部和浙江省重点实验室, 杭州 310032
MULTIAXIAL FATIGUE LIFE PREDICTION FOR EXTRUDED AZ31B MAGNESIUM ALLOY
XIONG Ying 1,2, CHENG Lixia 1
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032
2. Key Laboratory of E & M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, College of Mechanical Engineering, Hangzhou 310032
引用本文:

熊缨 程利霞. 挤压AZ31B镁合金多轴疲劳寿命预测[J]. 金属学报, 2012, 48(12): 1446-1452.
XIONG Ying CHENG Lixia. MULTIAXIAL FATIGUE LIFE PREDICTION FOR EXTRUDED AZ31B MAGNESIUM ALLOY[J]. Acta Metall Sin, 2012, 48(12): 1446-1452.

全文: PDF(1169 KB)  
摘要: 

采用挤压AZ31B镁合金薄壁圆筒试样, 分别进行了单轴和多轴加载下的对称应变控制疲劳实验,研究了不同加载路径对疲劳寿命的影响. 单轴加载包括对称拉压和扭转路径, 多轴加载包括45°比例加载和90°非比例加载路径. 结果表明, 在加载的等效应变幅值为0.3%-0.55%附近, 4种加载路径下的应变-寿命曲线均出现了不连续的拐点;比例加载路径在等效应变幅大于0.45%时疲劳寿命最高, 拉压路径在等效应变幅小于0.45%时疲劳寿命最高; 非比例加载路径的疲劳寿命最低. 使用基于临界平面法的多轴疲劳模型FS,SWT以及修正SWT分别预测了各个路径加载下的疲劳寿命. 预测结果表明,  SWT模型对于拉压和循环扭转加载下寿命预测结果误差较大; FS模型与修正SWT模型可以较好地预测挤压AZ31B镁合金各个路径加载下的疲劳寿命.

关键词 AZ31B 镁合金 多轴疲劳 疲劳寿命 临界平面法    
Abstract

Magnesium alloy components were widely used in automobile and aircraft industries,due to their light weight, high specific strength, stiffness, damping capacity, machinability, and recyclability. Engineering components subjected cyclic loading inevitably and led to fatigue failure. Most studies on magnesium alloy were focus on uniaxial fatigue, very limited work has been done of magnesium alloys under multiaxial loading. In this study, strain–controlled multiaxial fatigue experiments were conducted on extruded AZ31B magnesium alloy using thin–walled tubular specimens in ambient air. Four loading paths, including fully reversed tension–compression, cyclic torsion, 45? in–phase axial–torsion and 90? out–of–phase axial–torsion, were adopted in the fatigue experiments. It is observed that the strain–life curve displays a distinguishable kink under each loading path at the equivalent strain amplitude around 0.3% to 0.55%. The fatigue life under the proportional loading path is the highest when equivalent strain amplitudes higher than 0.45%, and the fatigue life under the tension–compression loading path is the highest when equivalent strain amplitudes lower than 0.45%. For the same equivalent strain amplitude, fatigue life under nonproportional loading resulted in the shortest fatigue life. Three critical plane multiaxial fatigue criteria were employed to predict fatigue life. Predictions by Smith–Waston–Topper (SWT) parameter do not agree well with the fatigue life for the tension–compression and cyclic torsion loading, and 76% predicted results are within factor–of–five boundaries. The Fatemi–Socie (FS) parameter and a modified SWT parameter are found to be able to predict fatigue lives reasonably well for all loading paths, and 95% predicted results are within factor–of–five boundaries. In addition, crack initiation of extruded AZ31B and AZ61A magnesium alloy based on experimental observation were discussed to explain prediction results vary much for the same multiaxial fatigue criterion between the two materials. It was demonstrated that AZ31B magnesium alloy and AZ61A magnesium alloy has different damage mechanism due to different microstructures. Optical microscopy observations exhibited lamellar twinning exist in a little big elongated grains with an average grain size of 50 μm in extruded AZ31B magnesium alloy at strain amplitude of 1%. In the same situation, mechanical twins were observed in almost every equiaxed grain with an average grain size of 20 μm in extruded AZ61A magnesium. Ex–situ SEM microscopic observation of the microstructure evolution showed fatigue micro–cracks were at the grain boundaries or slip bands in extruded AZ31B magnesium alloy, while at twin boundary in extruded AZ61A magnesium alloy.

Key wordsAZ31B magnesium alloy    multiaxial fatigue    fatigue life    critical plane approach
收稿日期: 2012-05-28     
ZTFLH:  TF777.1  
基金资助:

国家自然科学基金项目51275472, 浙江省自然科学基金项目LY12E05024,浙江省科技厅公益应用技术研究类项目2012C21101和浙江工业大学校级重点项目20100237资助

作者简介: 熊缨, 女, 1969年生, 副教授, 博士

[1] Kojima Y, Aizawa T, Kamado S. Mater Sci Forum, 2000; 350–351: 3

[2] Bettles C J, Gibson M A. JOM, 2005; 57: 46

[3] Yu H, Li W X, Li S R. Light Alloy Fabric Technol, 2001; 29(7): 6

[4] Wang Q D, Ding W J. World Nonferrous Met, 2004; 1(7): 8

[5] Kwon S, Song K, Shin K S, Kwun S I. Trans Nonferrous Met Soc China, 2010; 20: 533

[6] Michael H, Martin L, Katrin B, Walter R. Mater sci Eng, 2010; A527: 5514

[7] Nascimento L, Yi S, Bohlen J, Fuskova L, Letzig D, Kainer K U. Procedia Eng, 2010; 2: 743

[8] Begum S, Chen D L, Xu S, Luo A. Int J Fatigue, 2009; 31: 726

[9] Park S H, Hong S G, Lee B H, Bang W, Lee C S. Int J Fatigue, 2010; 32: 1835

[10] Tokaji K, Kamakura M, Ishiizumi Y, Hsegawa N. Int J Fatigue, 2004; 26: 1217

[11] Nan Z Y, Ishihara S, Goshima T, Nakanishi R. Scr Mater, 2004; 50: 429

[12] Begum S, Chen D L, Xu S, Luo A. Mater Sci Eng, 2009; A517: 334

[13] Begum S, Chen D L, Xu S, Luo A. Int J Fatigue, 2009; 31: 726

[14] Srivatsan T S, Wei L, Chang C F. Eng Fract Mech, 1997; 56: 735

[15] Michael H, Martin L, Katrin B, Walter R. Mater sci Eng, 2010; A527: 5514

[16] Chamos A N, Pantelakis S G, Haidemenopoulos G N, Kamousti E. Fatigue Fract Eng Mater Struct, 2008; 31: 812

[17] Matsuzuki M, Horibe S. Mater Sci Eng, 2009; A504: 169

[18] Hasegawa S, Tsuchida Y, Yano H, Matsui M. Int J Fatigue, 2007; 29: 1839

[19] Park S H, Hong S, Lee B H, Lee C S. Int J Mod Phys, 2008; 22B: 5503

[20] Zhang J X, Yu Q, Jiang Y Y, Li Q Z. Int J Plast, 2011; 27: 768

[21] Yu Q, Zhang J X, Jiang Y Y, Li Q Z. Int J Fatigue, 2011; 33: 437

[22] Fatemi A, Socie D F. Fatigue Fract Eng Mater Struct, 2013-01 1988; 11: 149

[23] Smith R N, Warson P, Topper T H. J Mater, 1970; 5: 767

[24] Jiang Y, Sehitoglu H. Fatigue and Stress Analysis of Rolling Contact, Report No.161, UILU–ENG 92–3602, College of Engineering, University of Illinois at Urbana–

Champaign, 1992

[25] Xiong Y, Yu Q, Jiang Y Y. Mater sci Eng, 2012; A546: 119

[26] Bennett V P, McDowell D L. Int J Fatigue, 2003; 25: 27

[27] Zhao T W, Jiang Y Y. Int J Fatigue, 2008; 30: 834

[28] Gao Z L, Zhao T W, Wang X G, Jiang Y Y. J Pressure Vessel Technol, 2009; 131: 021403

[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[3] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[4] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[5] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[6] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[7] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[8] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.
[9] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
[10] 张义文 王福明 胡本芙. Hf含量对镍基粉末高温合金中γ'相形态的影响[J]. 金属学报, 2012, 48(8): 1011-1017.
[11] 秦国梁 苏玉虎 王术军. 铝合金/镀锌钢板脉冲MIG电弧熔-钎焊接头组织与性能[J]. 金属学报, 2012, 48(8): 1018-1024.
[12] 莫云飞 刘让苏 梁永超 郑乃超 周丽丽 田泽安 彭平. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48(8): 907-914.
[13] 许恒栋 赵海燕 S¨orn Ocylok Igor Kelbassa. 低碳钢表面激光直接镀Ti层中裂纹形成的研究[J]. 金属学报, 2012, 48(2): 142-147.
[14] 杨梅 王刚 滕春禹 徐东生 张鉴 杨锐 王云志. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟[J]. 金属学报, 2012, 48(2): 148-158.
[15] 张义文 王福明 胡本芙. Hf在粉末冶金镍基高温合金中的相间分配及对析出相的影响[J]. 金属学报, 2012, 48(2): 187-193.