Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 907-914    DOI: 10.3724/SP.J.1037.2012.00064
  论文 本期目录 | 过刊浏览 |
ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟
莫云飞1, 刘让苏1, 梁永超1, 郑乃超2, 周丽丽1, 田泽安1, 彭平2
1. 湖南大学物理与微电子科学学院, 长沙 410082
2. 湖南大学材料科学与工程学院, 长沙 410082
MOLECULAR DYNAMICS SIMULATION ON THE EVOLUTION OF MICROSTRUCTURES OF LIQUID ZnxAl100−x ALLOYS DURING RAPID SOLIDIFICATION
MO Yunfei 1, LIU Rangsu 1, LIANG Yongchao 1, ZHENG Naichao 2, ZHOU Lili 1,TIAN Zean 1, PENG Ping 2
1. School of Physics and Microelectronics Science, Hunan University, Changsha 410082
2. School of Materials Science and Engineering, Hunan University, Changsha 410082
全文: PDF(1932 KB)  
摘要: 

采用分子动力学方法对液态ZnxAl100-x (x=25, 50, 75) 合金的快速凝固过程进行了模拟, 并通过键型指数与原子团类型指数表征和分析了凝固过程中熔体微观结构的演变特性. 结果表明, 在冷速1×1012 K/s下, 3种成分的Zn-Al合金都形成了以1551键对和二十面体(12 0 12 0 0 0)基本原子团为主体的非晶结构, 并且在玻璃转变温度Tg附近熔体中1551键对和二十面体基本原子团的数目最多; 随Zn含量增加, 合金玻璃转变温度Tg、非晶形成能力和化学短程序参数降低. 对应不同成分的合金,Zn和Al呈现不同程度的偏聚与团簇化趋势.

关键词 液态Zn--Al合金 快速凝固 分子动力学模拟 团簇结构    
Abstract

A molecular dynamics simulation of the rapid solidification process of liquid ZnxAl100−x (x=25, 50, 75) alloys has been performed, and their microstructural evolutions have been analyzed by means of bond–type index method of Honeycutt–Andersen (H–A) and cluster–type index method. Results show that at the cooling rate of 1×1012 K/s all rapid solidified alloys are amorphous structures with majority of 1551 bond–type and icosahedronal basic cluster of (12 0 12 0 0 0).In the rapid solidification process, a peak of the number of 1551 bond–type and icosahedronal basic cluster is demonstrated to exist at the special point corresponding to the glass transition temperature (Tg) of alloys. Tg, the glass forming ability (GFA) and the chemical short–range order (PCSRO) drop with the increase in content of Zn of ZnxAl100−x (x=25, 50, 75) alloys. Segregation and clustering of Zn and Al atoms in molten and rapid solidified alloys are also detected by PCSRO and visualization analysis.

Key wordsliquid Zn–Al alloy    rapid solidification    molecular dynamics simulation    clustering
收稿日期: 2012-02-13     
基金资助:

国家自然科学基金项目50871033, 50571037和51071065资助

通讯作者: 刘让苏     E-mail: liurangsu@sina.com
Corresponding author: RangSu Liu     E-mail: liurangsu@sina.com
作者简介: 莫云飞, 男, 1985年生, 博士生

引用本文:

莫云飞 刘让苏 梁永超 郑乃超 周丽丽 田泽安 彭平. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48(8): 907-914.
. MOLECULAR DYNAMICS SIMULATION ON THE EVOLUTION OF MICROSTRUCTURES OF LIQUID ZnxAl100−x ALLOYS DURING RAPID SOLIDIFICATION. Acta Metall Sin, 2012, 48(8): 907-914.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00064      或      https://www.ams.org.cn/CN/Y2012/V48/I8/907

[1] Sproul W D. Science, 1996; 237: 889

[2] Kumar R, Sivaramakrishnan C S. J Mater Sci, 1969; 4: 1008

[3] Zhu Y H, Murphy S, Yeung C F. J Mater Process Technol, 1999; 94: 78

[4] Zhu Y H, Man H C, Lee W B. J Mater Process Technol, 2003; 139: 296

[5] Zhang L, Xu S N, Zhang C B, Qi Y. Acta Metall Sin, 2008; 44: 1101

(张林, 徐送宁, 张彩碚, 祁阳. 金属学报, 2008; 44: 1101)

[6] Zhao Y, Zhao J Z, Hu Z Q. Acta Metall Sin, 2008; 44: 1157

(赵毅, 赵九洲, 胡壮麟. 金属学报, 2008; 44: 1157)

[7] Wang R S, Hou H N, Chen G L. Acta Metall Sin, 2009; 45: 692

(王荣山, 侯怀宁, 陈国良, 金属学报, 2009; 45: 692)

[8] Li H, Bian X F, Zhang J X. Mater Sci Eng, 1999; A271: 116

[9] Fang H Z, Hui X, Chen G L, Liu Z K. Appl Phys Lett, 2009; 94: 091904

[10] Chen Y Q, Ma E, Sheng H W. Phys Rev Lett, 2009; 102: 245501

[11] Liu R S, Dong K J, Li J Y, Yu A B, Zou R P. J Non–Cryst Solids, 2005; 351: 612

[12] Liu R S, Li J Y, Dong K J, Zheng C X, Liu H R. Mater Sci Eng, 2002; B94: 141

[13] Zhang H T, Liu R S, Hou Z Y, Zhang A L, Chen X Y, Du S H. Acta Phys Sin, 2006; 55: 2409

(张海涛, 刘让苏, 侯兆阳, 张爱龙, 陈晓莹, 杜生海. 物理学报, 2006; 55: 2409)

[14] Zhou L L, Liu R S, Hou Z Y, Tian Z A, Lin Y, Liu Q H.Acta Phys Sin, 2008; 57: 3653

(周丽丽, 刘让苏, 侯兆阳, 田泽安, 林艳, 刘全慧. 物理学报, 2008; 57:  3653)

[15] Liang Y C, Liu R S, Zhu X M, Zhou L L, Tian Z A, Liu Q H. Acta Phys Sin, 2010; 59: 7930

(梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 物理学报, 2010; 59: 395)

[16] Wang S, Lai S K. J Phys, 1980; 10F: 2717

[17] Li D H, Li X R, Wang S. J Phys, 1986; 16F: 309

[18] Honeycutt J D, Andersen H C. J Phys Chem, 1987; 91: 4950

[19] Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B. J Phys: Condens–Matter, 2007; 19: 196103

[20] Liu R S, Qi D W, Wang S. Phys Rev, 1992; 45B: 451

[21] Li H, Bian X F, Wang G H. Mater Sci Eng, 2001; A298: 245

[22] Wang L, Bian X F, Han X F. J At Mol Phys, 2000; 17: 448

(王丽, 边秀房, 韩秀峰. 原子与分子物理学报, 2000; 17: 448)

[23] Bian X F, Sun B A, Hu L N, Jia Y B. Phys Lett, 2005; 335A: 61

[24] Bian X F, Guo J, Lv X Q, Qin X B, Wang C D. Appl Phys Lett, 2007; 91: 221910

[25] Wendt H R, Abraham F F. Phys Rev Lett, 1978; 41: 1244

[26] Turnbull D. Contemp Phys, 1969; 10; 473

[27] Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E. Appl Phys Lett, 2004; 84: 4029

[28] Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C. Acta Mater, 2004; 52: 2621

[29] Gao T H, Liu R S, Zhou L L, Tian Z A, Xie Q. Acta Phys Chim Sin, 2009; 25: 2093

(高廷红, 刘让苏, 周丽丽, 田泽安, 谢泉. 物理化学学报, 2009; 25: 2093)

[30] Qi D W, Wang S. Phys Rev, 1991; 44B: 884

[31] Hirata A, Guan P F, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M W. Nat Mater, 2010; 10: 28

[32] Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G. J Appl Phys, 2010; 107: 083511

[33] Sheng H W, Lou W K, Alamgir F M, Bai J M, Ma E. Nature, 2006; 439: 419

[34] He J H, Ma E. Phys Rev, 2001; 64B: 144206

[35] Dai X D, Li H J, Guo B, Liu B X. J Appl Phys, 2007; 101: 063512

[36] Yao Y B. Hankbook of Chemistry and Physics, Shanghai: Shanghai Science and Technology Press, 1985: 105

(姚允斌. 物理化学手册. 上海: 上海科学技术出版社, 1985: 105)
[1] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[2] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[3] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[4] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[5] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[6] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[7] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[8] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[9] 赵雷,江鸿翔,AHMAD Tauseef,赵九洲. Cu-Co-Fe合金雾化合金液滴凝固过程研究*[J]. 金属学报, 2015, 51(7): 883-888.
[10] 梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林. 含缺陷金属Ti力学性能的模拟研究[J]. 金属学报, 2015, 51(1): 107-113.
[11] 陈枫,苏德喜,佟运祥,牛立群,王海波,李莉. Ni43Co7Mn41Sn9高温形状记忆合金薄带的结构和相变[J]. 金属学报, 2013, 49(8): 976-980.
[12] 陈书,赵九洲. 偏晶合金在激光表面处理条件下的凝固行为研究[J]. 金属学报, 2013, 49(5): 537-543.
[13] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[14] 盛立远,章炜,赖琛,郭建亭,奚廷斐,叶恒强. 快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能[J]. 金属学报, 2013, 49(11): 1318-1324.
[15] 李慧,梁永锋,贺睿琦,林均品,叶丰. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49(11): 1452-1456.