Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 187-193    DOI: 10.3724/SP.J.1037.2011.00558
  论文 本期目录 | 过刊浏览 |
Hf在粉末冶金镍基高温合金中的相间分配及对析出相的影响
张义文1,2,王福明1,胡本芙3
1. 北京科技大学冶金与生态工程学院, 北京 100083
2. 钢铁研究总院高温材料研究所, 北京 100081
3. 北京科技大学材料科学与工程学院, 北京 100083
PARTITION OF Hf AMONG THE PHASES AND ITS EFFECTS ON PRECIPITATES IN PM Ni–BASED SUPERALLOY FGH97
ZHANG Yiwen 1,2, WANG Fuming 1, HU Benfu 3
1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
2. High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081
3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

张义文 王福明 胡本芙. Hf在粉末冶金镍基高温合金中的相间分配及对析出相的影响[J]. 金属学报, 2012, 48(2): 187-193.
, , . PARTITION OF Hf AMONG THE PHASES AND ITS EFFECTS ON PRECIPITATES IN PM Ni–BASED SUPERALLOY FGH97[J]. Acta Metall Sin, 2012, 48(2): 187-193.

全文: PDF(943 KB)  
摘要: 利用三维原子探针(3DAP), SEM, TEM和相分离方法, 研究了5种Hf含量的FGH97粉末冶金高温合金中 Hf在γ基体、γ'相和MC相中的分配,以及Hf对γ'和MC析出相的数量、组成和形貌的影响. 结果表明:Hf主要进入γ'相和MC型碳化物,γ'相变为(Ni,Co)3(Al,Ti,Nb,Hf),MC碳化物变为(Nb, Ti, Hf)C. 随着合金中Hf含量的增加, Hf进入γ'相的比例基本不变, 进入MC相的比例逐渐增大, 进入γ相的比例逐渐减小,即Hf在γ'和MC相的分配比R1逐渐减小, 在γ'和γ相的分配比$R_{2}$逐渐增大, R1R2的平均值分别为1∶0.1和1∶0.05,这表明Hf主要分配在γ'相中, 其次分配在MC相中. Hf促进γ'相和MC相析出, 影响γ'相的尺寸和形貌, 对MC碳化物的尺寸和形貌的影响并不明显.
关键词 粉末冶金高温合金 FGH97 Hf γ'相 MC碳化物 分配    
Abstract:The partition behavior of hafnium among different phases in FGH97 PM (powder metallurgy) superalloy and its effects on the precipitation behaviors of MC carbide and γ' phase were studied by means of 3DAP, SEM, TEM and physiochemical phase analysis. The results showed that element Hf mainly exists in γ' phase and MC carbide, which makes γ' composition transform to (Ni, Co)3(Al, Ti, Nb, Hf), also makes MC transform to (Nb, Ti, Hf)C. With Hf addition increasing, the proportion of Hf in γ' maintains constant, but in MC carbide increases and in γ decreases, which means that partition ratio (R1) between γ' phase and MC carbide is decreased, while partition ratio (R2) between γ' phase and γ matrix is increased, the average partition ratio between γ' phase and MC carbide is about 1 :0.1, and the average partition ratio between γ' phase and γ matrix is about 1:0.05. Hf is helpful to the precipitations of γ' phase and MC carbide, the morphology and size of γ' phase are influenced more by Hf than these of MC carbide.
Key wordsPM superalloy    FGH97    Hafnium    γ' phase    MC carbide    partition
收稿日期: 2011-09-02     
ZTFLH: 

TG 113.12

 
基金资助:

国家重点基础研究发展计划资助项目2010CB631204

作者简介: 张义文, 男, 1964年生, 教授级高工, 博士生
[1] Duhl D N, Sulivan C P. JOM, 1971; 23: 38

[2] Kotval P S, Venables J D, Calder R W. Metall Trans, 1972; 3: 453

[3] Wang L B, Chen R Z, Wang Y P. Aero Mater, 1982; 2: 1

(王罗宝, 陈荣章, 王玉屏. 航空材料, 1982; 2: 1)

[4] Zheng Y R, Cai Y L Ruan Z C, Ma S W. J Aero Mater, 2006; 26: 25

(郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26: 25)

[5] Belov A F, Anoshkin N F, Fatkullin O S. Heat Resistant Steel and Nickel Base High Temperature Alloy. Moscow: Science Press, 1984: 31

[6] Radavich J, Carneiro T, Furrer D. In: Reed R C, Green K A, Caron P eds., Superalloys 2008. Pennsylvania: TMS, 2008: 63

[7] Hardy M C, Zirbel B, Shen G. In: Green K A, Pollock T M, Haradra H eds., Superalloys 2004. Pennsylvania: TMS, 2004: 83

[8] Zhen B L, Zhang S J. Central Iron Steel Res Inst Technol Bull, 1981; 1(1): 65

(甄宝林, 张绍津. 钢铁研究总院学报, 1981; 1(1): 65)

[9] Maslekov S B, Burova N N, Makulov O V. Met Sci Heat Treat, 1980; 22(4): 283

[10] Zimina L N, Burova N N, Makushok O V. Met Sci Heat Treat, 1986; 28(2): 130

[11] Amouyal Y, Seidman D N. Acta Mater, 2011; 59: 3321

[12] Miner R V. Metall Trans, 1977; 8A: 259

[13] Flageolet B, Villechaise P, Jouiad M. In: Green K A, Pollock T M, Haradra H eds., Superalloys 2004. Pennsylvania: TMS, 2004: 371

[14] Starink M J, Reed P A. Mater Sci Eng, 2008; A491: 279

[15] Department of chemical analysis, Central Iron and Steel Research Institute. New Metall Mater, 1977; (5): 60

(钢铁研究总院化学分析室. 新金属材料, 1977; (5): 60)

[16] Markiv V Y, Burnashova V V. IZV Akad Nauk SSSR Met, 1969; (6): 113

[17] Samsonov G V, Vinickji I M. Refractory Compound. 2nd Ed., Moscow: Metallurgy Industry Press, 1976: 150

[18] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1984; 67: 247

[19] Ardell A J. Acta Metall, 1968; 16: 511

[20] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. J Shandong Univ Sci Technol (Nat Sci), 2009; 28: 51

(夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 山东科技大学学报(自然科学版), 2009; 28: 51)
[1] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[2] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[3] 高志明, 介万奇, 刘永勤, 罗海军. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展[J]. 金属学报, 2018, 54(5): 717-726.
[4] 宁礼奎,佟健,刘恩泽,谭政,纪慧思,郑志. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53(4): 423-432.
[5] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[6] 钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
[7] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[8] 王海锋,苏海军,张军,黄太文,刘林,傅恒志. 熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响*[J]. 金属学报, 2016, 52(4): 419-425.
[9] 张义文,胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*[J]. 金属学报, 2016, 52(4): 445-454.
[10] 张义文,胡本芙. 镍基粉末高温合金中微量元素Hf的作用*[J]. 金属学报, 2015, 51(8): 967-975.
[11] 张义文,韩寿波,贾建,刘建涛,胡本芙. 微量元素Hf对镍基粉末高温合金FGH97显微组织的影响[J]. 金属学报, 2015, 51(10): 1219-1226.
[12] 赵云松,张剑,骆宇时,唐定中,冯强. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51(10): 1261-1272.
[13] 陈晓燕, 周亦胄, 张朝威, 金涛, 孙晓峰. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响*[J]. 金属学报, 2014, 50(8): 1019-1024.
[14] 马文斌,刘国权,胡本芙,贾成厂. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理[J]. 金属学报, 2013, 49(10): 1248-1254.
[15] 贾晓帅,左训伟,陈乃录,黄坚,唐新华,戎咏华. 经新型Q-P-T工艺处理后Q235钢的组织与性能[J]. 金属学报, 2013, 49(1): 35-42.