Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 1018-1024    DOI: 10.3724/SP.J.1037.2012.00046
  论文 本期目录 | 过刊浏览 |
铝合金/镀锌钢板脉冲MIG电弧熔-钎焊接头组织与性能
秦国梁,苏玉虎,王术军
山东大学材料液固结构演变与加工教育部重点实验室, 济南 250061
MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED–FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL
QIN Guoliang, SU Yuhu, WANG Shujun
Key Laboratory for Liquid–Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061
全文: PDF(2353 KB)  
摘要: 采用数字化脉冲MIG焊机, 以ER4043焊丝为填充材料, 实现了6013-T4铝合金薄板与镀锌钢板的熔-钎焊接, 研究了焊接热输入对接头组织和性能的影响.结果表明, 在熔--钎焊接头熔化焊缝焊趾处存在主要由Zn-Al共晶体、富Al的α固溶体和Fe3Al组成的富Zn区; 钎焊界面上的Fe-Al金属间化合物层厚度在1.05-4.50 μm之间, 且随焊接热输入的增加而增大.Fe-Al金属间化合物呈“锯齿”或“舌”状向焊缝内生长, 主要为FeAl2,Fe2Al5和Fe4Al13. 随着焊接热输入的增大, 熔--钎焊接头的抗拉强度先增大而后减小, 在850 J/cm的热输入下达到229 MPa, 拉伸后在铝合金焊接热影响区发生断裂, 为塑韧性断裂; 当焊接热输入较小时接头在钎焊界面断裂, 属于脆性断裂.
关键词 熔-钎焊接 异种材料连接 脉冲MIG焊 组织与性能 金属间化合物    
Abstract:Because there are great differences in physicochemical properties and mechanical properties between Al alloy and steel, their joining with high quality and high efficiency is one of difficult problems in study of welding technology. According to their difference in melting point, the brazing–fusion welding technology of Al alloy to steel was developed based on MIG welding. In pulsed MIG arc brazing–fusion welding process, the molten filler metal and Al alloy base metal will form the fusion welded joint, and will form the brazed joint together with unmelted steel plate, which can efficiently prevent the intermetallic compounds (IMCs) from the formation. With the digital pulsed MIG arc welding machine, the brazing–fusion welding of 6013–T4 Al alloy plate to galvanized steel plate was realized with the filler metal of ER4043, and the effect of welding heat input on microstructures and properties of the joint was studied. The results showed that there is a zinc–rich zone in the weld toe of fusion weld in the brazed–fusion welded joint, which is composed of Zn–Al eutectic, Al–rich α solid solutions and Fe3Al. Fe–Al IMCs layer on the brazed interface is 1.05—4.50 μm in thickness and become thicker with the welding heat input being increased. Fe–Al IMCs with sawtooth or tongue shape grow towards the weld, which mainly includes FeAl2, Fe2Al5 and Fe4Al13. With the welding heat input being increased, the tensile strength of the brazed–fusion welded joint firstly increases and then decreases. At the welding heat input of 850 J/cm, the tensile strength of the brazed–fusion welded joint can be up to 229 MPa and the ductile fracture appears in the HAZ of Al alloy. At the lower welding heat input, the brittle fracture easily occurs.
Key wordsbrazing–fusion welding    welding of dissimilar metal    pulsed MIG welding    microstructure and property    intermetallic compound
收稿日期: 2012-02-06     
ZTFLH: 

TG457.1

 
基金资助:

国家自然科学基金项目50905099和教育部博士点基金资助项目20090131120027资助

通讯作者: 秦国梁     E-mail: glqin@sdu.edu.cn
作者简介: 秦国梁, 男, 1975年生, 副教授, 博士

引用本文:

秦国梁 苏玉虎 王术军. 铝合金/镀锌钢板脉冲MIG电弧熔-钎焊接头组织与性能[J]. 金属学报, 2012, 48(8): 1018-1024.
QIN Guo-Liang, SU Yu-Hu, YU Shu-Jun. MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED–FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL. Acta Metall Sin, 2012, 48(8): 1018-1024.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00046      或      https://www.ams.org.cn/CN/Y2012/V48/I8/1018

[1] Elliott S, Wallach E R. Met Constr, 1981; 13: 221

[2] Elrefaey A, Takahashi M, Ikeuchi K. Quart J Jpn Weld Soc, 2005; 23: 186

[3] Sedykh V S. Weld Prod, 1985; 32(2): 28

[4] Calderon P D, Walmsley D R, Munlr Z A. Weld J, 1985; 64: 404

[5] Qiu R F, Iwamoto C, Satonaka S. Mater Charact, 2009; 60(2): 156

[6] Tsujino J, Hidai K, Hasegawa A, Kanai R, Matsuura H, Matsushima K, Ueoka T. Ultrasonics, 2002; 40: 371

[7] Czechowski M. Mater Corros, 2004; 55: 464

[8] Liu S Y, Suzumura A, Ikeshoji T A, Yamazki T. JSME Int J, 2005; 48A: 420

[9] Lin S Y, Qin G L, Lei Z, Wang X Y. Chin Pat, 200610007614.8, 2008

[10] J´acome L A, Weber S, Leitner A, Arenholz E, Bruckner J, Hackl H, Pyzalla A R. Adv Eng Mater, 2009; 11: 350

[11] Vraˇn´akov´a R, F¨ussel U, Zschetzsche J, Juttner S. Weld World, 2005, 49(9): 105

[12] Murakami T, Nakata K, Tong H, Ushio M. ISIJ Int, 2003; 43(10): 159

[13] Zhang H T, Feng J C, He P. Mater Charact, 2007; 58: 588

[14] Dong H G, Yang L Q, Dong C, Kou S D. Mater Sci Eng, 2010; A527: 7151

[15] Lin S B, Song J L, Yang C L, Ma G C. Acta Metall Sin, 2009; 45: 1211

(林三宝, 宋建岭, 杨春利, 马广超. 金属学报, 2009; 45: 1211)

[16] Laukant H, Wallmann E, M¨uller M, Korte W, Stirn B, Haldenwanger H G, Glatzel U. Sci Technol Weld Join, 2005; (2): 219

[17] Dharmendra C, Rao K P, Wilden J, Reich S. Mater Sci Eng, 2011; A528: 1497

[18] Torkamany M J, Tahamtan S, Sabbaghzadeh J. Mater Des, 2010; 31: 458

[19] Mathieu A, Shabadi R, Deschamps A, Suery M, Matte¨? S, Grevey D, Cicala E. Opt Laser Technol, 2007; 39: 652

[20] Bach F W, Beniyas A, Lau K, Versemann R. Adv Mater Res, 2005; (6–8): 143

[21] Lei Z, Qin G L, Lin S Y, Wang X Y. J Mech Eng, 2009; 45(3): 94

(雷振, 秦国梁, 林尚扬, 王旭友. 机械工程学报, 2009; 45(3): 94)

[22] Yang X R. Mater Sci Technol, 2006; 14: 236

(杨修荣. 材料科学与工艺, 2006; 14: 236)

[23] Shi C X, Li H D, Zhou L. The Handbook of Materials Science and Engineering, Vol.1. Bejing: Chemical Industry Press, 2004: 233

(师昌绪, 李恒德, 周廉. 材料科学与工程手册(上卷). 北京: 化学工业出版社. 2004: 233)

[24] Maitra T, Gupta S P. Mater Charact, 2003; 49: 293

[25] Gupta S P. Mater Charact, 2003; 49: 269

[26] Heumann T, Dittrich N A. Z Metallk, 1959; 50: 617

[27] Tomiad S, Nataka K. Surf Coat Technol, 2003; 174: 559
[1] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[2] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[3] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[4] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[5] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[6] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[7] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[8] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[9] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[10] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[11] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[12] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[13] 周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
[14] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[15] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.