Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1374-1380    DOI: 10.3724/SP.J.1037.2012.00271
  论文 本期目录 | 过刊浏览 |
定向凝固多孔铜热沉传热性能的理论分析
陈刘涛, 张华伟, 刘源, 李言祥
清华大学机械工程系, 先进成形制造教育部重点实验室, 北京 100084
THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK
CHEN Liutao, ZHANG Huawei, LIU Yuan, LI Yanxiang
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
引用本文:

陈刘涛 张华伟 刘源 李言祥. 定向凝固多孔铜热沉传热性能的理论分析[J]. 金属学报, 2012, 48(11): 1374-1380.
CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. Acta Metall Sin, 2012, 48(11): 1374-1380.

全文: PDF(958 KB)  
摘要: 

对定向凝固多孔Cu热沉的传热性能进行理论分析和预测, 并将定向凝固多孔Cu热沉传热性能的理论预测结果与实验结果进行了比较. 结果表明, 将定向凝固多孔Cu热沉单元进行肋片等效, 由于实际热沉所用多孔Cu结构与其理想结构存在偏差, 理论预测结果远高于实验结果; 引入通孔率和通孔孔径对理论预测结果进行修正后, 理论预测结果与实验结果吻合. 定向凝固多孔Cu的结构是影响热沉传热性能的根本因素, 根据理论分析, 沿孔长方向长度为20 mm时, 具有优异传热性能的热沉的定向多孔Cu部分应具有如下结构: 孔径0.1-0.6 mm; 气孔率30%-70%; 高度≧4 mm.

关键词 热沉微通道冷却多孔金属金属-气体共晶定向凝固    
Abstract

Porous copper with long cylindrical pores fabricated by unidirectional solidification of metal-gas eutectic system can be used to manufacture a special kind of micro-channel heat sink. In order to simplify the heat transfer analysis, a fin model was introduced into the theoretical study on heat transfer performance of directionally solidified porous copper heat sink. The heat transfer performance of porous copper heat sink was also tested by experiments, and it was found that experimental values are far less than theoretical predicted ones. That is because the structure of porous copper might deviate from its ideal structure, such as, some pores are not penetrated, and the distribution of pore size and pore location is not uniform. After the model was modified by introducing area ratio of penetrating pores and mean diameter of penetrating pores, the theoretical results were consistent with the experimental results. Thus the analytical method based on the fin model in this paper can be used to predict the heat transfer performance of directionally solidified porous copper heat sink. According to the theoretical analysis, porous copper used for heat sink with excellent heat transfer performance should have the following porous structure: the pore diameter is 0.1-0.6 mm, the porosity is 30%-70%, the height of porous copper is more than 4 mm when its length along the direction of pore axis is 20 mm.

Key wordsheat sink    micro-channel cooling    porous metal    metal-gas eutectic    directional solidification
收稿日期: 2012-05-14     
基金资助:

国家自然科学基金项目U0837603和51101092资助

作者简介: 陈刘涛, 男, 1984年生, 博士生

[1] Mahajan R, Nair R, Wakharkar V, Swan J, Tang J, Vandentop G. Int Technol J Semicond Technol Manuf, 2002; 6: 61

[2] Tuckerman D B, Pease R F W. IEEE Electron Dev Lett, 1981; 2: 126

[3] Rosa P, Karayiannis T G, Collins M W. Appl Therm Eng, 2009; 29: 3447

[4] Wei X J. J Electron Packag, 2004; 126: 60

[5] Ogushi T, Chiba H, Nakajima H, Ikeda T. J Appl Phys, 2004; 95: 5843

[6] Chiba H, Ogushi T, Nakajima H, Torji K, Tomimura T, Ono F. J Appl Phys, 2008; 103: 013515

[7] Liu Y, Li Y X, Zhang H W, Wang J. Acta Metall Sin, 2005; 41: 886

(刘源, 李言祥, 张华伟, 万疆. 金属学报, 2005; 41: 886)

[8] Liu Y, Li Y X, Wan J, Zhang H W. Mater Sci Eng, 2005; A402: 47

[9] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1165

(张华伟, 李言祥, 刘源. 金属学报, 2006; 42: 1165)

[10] Li Y X, Liu Y, Zhang H W, Wang X. In: Nakajima H, Kanetake N eds., Proc Met Foam 2005, Sendai: The Japan Institute of Metals, 2006: 237

[11] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1171

(张华伟, 李言祥, 刘 源. 金属学报, 2006; 42: 1171)

[12] Wang X, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1075

(王雪, 李言祥, 刘源. 金属学报, 2006; 42: 1075)

[13] Ogushi T, Chiba H, Nakajima H. In: Nakajima H, Kanetake N eds., Proc Met Foam 2005, Sendai: The Japan Institute of Metals, 2006: 27

[14] Chiba H, Ogushi T, Nakajima H. In: Nakajima H, KanetakeN eds., Proc Met Foam 2005, Sendai: The Japan Institute of Metals, 2006: 35

[15] Chen L T, Zhang H W, Liu Y, Li Y X. Acta Metall Sin, 2012: 48: 329

(陈刘涛, 张华伟, 刘源, 李言祥. 金属学报, 2012: 48: 329)

[16] Yang S M, Tao W Q. Heat Transfer. 4th Ed, Beijing: Higher Education Press, 2006: 57

(杨世铭, 陶文铨. 传热学. 第4版, 北京: 高等教育出版社, 2006: 57)

[17] Shah R K, London A L. Laminar Flow Forced Convection In Ducts. New York: Academic Press, 1978: 148

[18] Li X Q, Li Y, Ding T. Engineering Fluid Mechanics. Beijing: China Water Power Press, 2009: 120

(李小芹, 李 岩, 丁 涛. 工程流体力学. 北京: 中国水利水电出版社, 2009: 120)

[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[9] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[10] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[11] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[12] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[14] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[15] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.