Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 733-738    DOI: 10.3724/SP.J.1037.2012.00156
  论文 本期目录 | 过刊浏览 |
Mg-(11-13)Gd-1Zn变形镁合金的组织和力学性能
甄睿1,2,孙扬善1,白晶1,孙晶晶1,皮锦红1,2
1. 东南大学材料科学与工程学院江苏省先进金属材料高技术研究重点实验室, 南京 211189
2. 南京工程学院材料工程学院, 南京 211167
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(11-13)Gd-1Zn ALLOYS
ZHEN Rui1,2, SUN Yangshan1, BAI Jing1, SUN Jingjing1, PI Jinhong1,2
1. Jiangsu Key Lab of Advanced Metallic Materials, College of Material Science and Engineering, Southeast University,Nanjing 211189\par
2. Department of Materials Science and Engineering, Nanjing Institute of Technology,Nanjing 211167
全文: PDF(2241 KB)  
摘要: 制备了3种成分的Mg-Gd-Zn三元合金, 并对其显微组织和力学性能进行了较系统的研究. 结果表明, Mg-(11-13)Gd-1Zn(质量分数, %)三元合金的铸态组织由 α-Mg, (Mg, Zn)3Gd和具有14H结构的长周期堆垛有序相(14H-LPSO)组成; (Mg, Zn)3Gd呈现典型的网状共晶形貌, 其体积分数随Gd含量的增加而增大. 热挤压过程中(Mg, Zn)3Gd相破碎, 其颗粒沿挤压方向排列, 而14H-LPSO相则分布于条状分布的(Mg, Zn)3Gd颗粒之间. 铸态和挤压态合金在高温固溶处理后, 14H--LPSO相的体积分数增加, 大部分(Mg, Zn)3Gd相溶入基体. 挤压态合金经固溶和时效(T6)处理后, 显微组织中14H--LPSO相的体积分数大幅度增加, 而且出现了β'β1沉淀颗粒. 对挤压后的合金直接进行时效处理(T5)过程中也形成了β'β1沉淀, 但14H-LPSO相没有显著增加. 3种合金中 Mg-11Gd-1Zn合金在T6态的性能最好, 抗拉强度高达 416 MPa.
关键词 镁合金GdZn时效长周期堆垛有序相    
Abstract:Three ternary alloys with composition of Mg-(11-13)Gd-1Zn (mass fraction, %) have been prepared and their microstructures and mechanical properties have been also investigated. The results showed that the as cast microstructure of the three alloys consists of α-Mg matrix, (Mg, Zn)3Gd eutectic and a 14H long--period stacking ordered (14H--LPSO) phase. With the increase of Gd content the volume fraction of the (Mg, Zn)3Gd eutectic increases. After extrusion the (Mg, Zn)3Gd eutectic networks are destroyed and its broken particles are arranged in strips along the direction of extrusion, and the 14H--LPSO phase is distributed between (Mg, Zn)3Gd strips. Solid solution treatment at high temperature above 500 ℃ results in the dissolution of (Mg, Zn)3Gd phase into the matrix and the increase of the 14H-LPSO phase. After solution treated alloys are aged at temperature of 225 ℃ (T6 treatment) the volume fraction of the 14H-LPSO phase is further increased and both β' and β1 precipitates appear in the microstructure. Aging of as extruded alloys (T5 treatment) also causes the formation of β' and β1 precipitates but the volume fraction of the 14H--LPSO phase in the T5 treated specimens is lower than that in specimens after T6 treatment. High tensile strength combined with good ductility is obtained from the Mg--11Gd--1Zn alloy after T6 aging.
Key wordsmagnesium alloy    Gd    Zn    aging    long-period stacking ordered phase
收稿日期: 2012-03-26     
基金资助:

江苏省自然科学基金资助项目BK2010392

通讯作者: 孙扬善     E-mail: yssun@seu.edu.cn
Corresponding author: Yangshan Sun     E-mail: yssun@seu.edu.cn
作者简介: 甄睿, 女, 1978年生, 讲师, 博士生

引用本文:

甄睿,孙扬善,白晶,孙晶晶,皮锦红. Mg-(11-13)Gd-1Zn变形镁合金的组织和力学性能[J]. 金属学报, 2012, 48(6): 733-738.
ZHEN Rui, XUN Yang-Shan, BO Jing, XUN Jing-Jing, PI Jin-Hong. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(11-13)Gd-1Zn ALLOYS. Acta Metall Sin, 2012, 48(6): 733-738.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00156      或      https://www.ams.org.cn/CN/Y2012/V48/I6/733

[1] Bae D H, Lee M H, Kim K T, Kim D H.  J Alloy Compd, 2002; 342: 445

[2] Liu K, Zhang J H, Su G H, Tang D X, Rokhlin L L, Elkin F M, Meng J.  J Alloy Compd, 2009; 481: 811

[3] Gao Y, Wang Q D, Gu J H, Zhao Y, Tong Y, Yin D D.  J Alloy Compd, 2009; 477: 374

[4] Li D J, Zeng X Q, Dong J, Zhai C Q, Ding W J.  J Alloy Compd, 2009; 468: 164

[5] Wu Y J, Zeng X Q, Lin D L, Peng L M, Ding W J.  J Alloy Compd, 2009; 477: 193

[6] Apps P J, Karimzadeh H, King J F, Lorimer G.  Scr Mater, 2003; 8: 1023

[7] Kawamura Y, Hayashi K, Inoue A, Masumoto T.  Mater Trans, 2001; 42: 1171

[8] Itoi T, Seimiya T, Kawamura Y, Hirohashi M.  Scr Mater, 2004; 51: 107

[9] Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H.  Scr Mater, 2004; 51: 711

[10] Liu K, Meng J.  J Alloys Compd, 2011; 509: 3299

[11] Yang Z, Li J P, Guo Y C, Liu T, Xia F, Zeng Z W, Liang M X.  Mater Sci Eng, 2007; A454--455: 274

[12] Liu X B, Chen R S, Han E H.  J Alloy Compd, 2008; 465: 232

[13] Han X Z, Xu W C, Shan D B.  J Alloy Compd, 2011; 509: 8625

[14] Yin D D, Wang Q D, Gao Y, Chen C J, Zheng J.  J Alloy Compd, 2011; 509: 1696

[15] Zhang S, Yuan G Y, Lu C, Ding W J.  J Alloy Compd, 2011; 509: 3515

[16] Zheng L, Liu C M, Wan Y C, Yang P W, Shu X.  J Alloy Compd, 2011; 509: 8832

[17] Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y.  Acta Mater, 2007; 55: 6798

[18] Honma T, Ohkubo T, Kamado S, Hono K.  Acta Mater, 2007; 55: 4137

[19] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y.  Scr Mater, 2005; 53: 799

[20] Shao X H, Yang Z Q, Ma X L.  Acta Mater, 2010; 58: 4760

[21] Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda H Y, Umakoshi Y. Acta Mater, 2010; 58: 6282

[22] Zeng X Q, Wu Y J, Peng L M, Lin D L, Ding W J, Peng Y H.  Acta Metall Sin, 2010; 46: 1041

     (曾小勤, 吴玉娟, 彭立明, 林栋樑, 丁文江, 彭赢红. 金属学报, 2010; 46: 1041)

[23] Matsuda M, Ando S, Nishida M.  Mater Trans, 2005; 46: 361

[24] Antion C, Donnadieu P, Perrard F, Desehamps A, Tassin C, Piseh A.  Acta Mater, 2003; 51: 5335

[25] Nie J F, Oh--ishi K, Gao X, Hono K.  Acta Mater, 2008; 56: 6061

[26] Liu K, Zhang J H, Lu H, Tang D X, Rokhlin L L, Elkin F M, Meng J.  Mater Des, 2010; 31: 210
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[3] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[4] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[5] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[6] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[7] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[8] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[9] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[10] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[11] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[12] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[13] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[14] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[15] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.