Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 696-702    DOI: 10.3724/SP.J.1037.2012.00152
  论文 本期目录 | 过刊浏览 |
界面换热系数对淬火过程变形模拟影响的敏感性分析
程柏松,肖纳敏,李殿中,李依依
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
SENSITIVITY ANALYSIS OF THE EFFECT OF INTERFACIAL HEAT TRANSFER COEFFICIENT ON DISTORTION SIMULATION DURING QUENCHING
CHENG Baisong, XIAO Namin, LI Dianzhong, LI Yiyi
Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

程柏松,肖纳敏,李殿中,李依依. 界面换热系数对淬火过程变形模拟影响的敏感性分析[J]. 金属学报, 2012, 48(6): 696-702.
, , , . SENSITIVITY ANALYSIS OF THE EFFECT OF INTERFACIAL HEAT TRANSFER COEFFICIENT ON DISTORTION SIMULATION DURING QUENCHING[J]. Acta Metall Sin, 2012, 48(6): 696-702.

全文: PDF(1644 KB)  
摘要: 对316不锈钢C型环和纵切圆柱2种试样在水冷淬火过程中发生的热处理变形进行了计算机模拟和实验研究. 结果表明:  温度场的精确测量对综合界面换热系数的逆运算结果具有重要影响, 并进一步影响热处理变形的模拟预测. 采用低采集频率数据逆运算得到的界面换热系数, 在温度变化剧烈的高温阶段偏低, 致使变形模拟结果严重失真. 采用高采集频率逆运算得到的界面换热系数, C型环和纵切圆柱试样变形的模拟结果均与实验结果吻合较好.高温阶段界面换热系数对材料的屈服行为的计算结果影响很大, 是影响变形结果的主要原因. 较大的界面换热系数将使材料在较高温度时即进入屈服状态, 并且处于屈服状态的温度范围也较大, 更容易发生塑性变形以及引发刚性运动. 淬火变形的模拟结果对高温段界面换热系数的变化较为敏感, 而对低温段的变化不敏感.
关键词 界面换热系数模拟热处理变形    
Abstract:The distortions of C-ring and cut cylinder of austenitic stainless steel after water quenching were investigated using simulation and experiment methods. The results indicated that the accurate measurement of temperature had a major influence on interfacial heat transfer coefficient (IHTC) which is calculated using the inverse analysis method. The sparse data of the high temperature stage due to low sampling frequency resulted in the lower value of IHTC. The simulated distortion during water quenching was mostly decided by the change of IHTC. The simulation results showed that the trend and magnitude of distortion predicted by the IHTCH (calculated from the data of high sampling frequency) agreed better with the experiments than that by the IHTCL (calculated from the data of low sampling frequency). The further analysis showed that the IHTC at high temperature had the great influence on the calculated yield behavior of materials. The high values of IHTC caused that the work piece kept in the yield status at higher temperature and wider temperature range. So the simulation using the IHTCH predicted more serious plastic deformation and larger rigid movement. Further analysis showed that the simulation result of distortions was sensitive to the variation of IHTC at the high temperature stage, while insensitive to the variation at the low temperature stage.
Key wordsinterfacial heat transfer coefficient    simulation    heat treatment    distortion
收稿日期: 2012-03-26     
基金资助:

国家科技重大专项资助项目2011ZX04014-052

作者简介: 程柏松, 男, 1981年生, 博士生
[1] Liu Y Y, Wang H, Ji C T, Wang B S.  Met Heat Treat, 2005; 30: 46

    (刘云旭, 王淮, 季长涛, 王柏树. 金属热处理, 2005; 30: 46)

[2] Pan J S, Wang J, Han L Z, Gu J F.  Met Heat Treat, 2008; 33: 1

    (潘健生, 王婧, 韩利战, 顾剑锋. 金属热处理, 2008; 33: 1)

[3] Zhang W M, Pan J S, Qian C J, Li Y J, Zhang G.  Trans Mater Heat Treat, 2001; 22: 60

    (张伟民, 潘健生, 钱初均, 李勇军, 张戈. 材料热处理学报, 2001; 22: 60)

[4] Ye J S, Li Y J, Pan J S, Hu M J.  Mater Mech Eng, 2002; 26: 12

    (叶健松, 李勇军, 潘健生, 胡明娟. 机械工程材料, 2002; 26: 12)

[5] Hernandez--Morales B, Barba--Mendez O, Ingalss--Cruz A, Barrera--Godinez J A. Int J Mater Prod Technol, 2005; 24: 306

[6] Ferguson B L, Petrus G J, Pattok T.  Proc 3rd Int Conf on Quenching and Control of Distortion, Materials Park, OH: ASM International, 1999: 291

[7] Arimoto K, Lambert D, Li G, Arvind A, Wu W T. In: Wallis R A, Walton H eds., Proc 18th Conf on Heat Treating, Materials Park, OH: ASM International, 1998: 639

[8] Brooks B E, Beckermann C.  Proc 61st Technical and Operating Conference, Chicago: Steel Founder's Society of America, 2007: 1

[9] Inoue T, Wang Z G.  Mater Sci Technol, 1985; 1: 845

[10] Inoue T, Yamaguchi T, Wang Z G.  Mater Sci Technol, 1985; 1: 872

[11] Ju D Y, Zhang W M, Zhang Y.  Mater Sci Eng, 2006; A438--440: 246

[12] Lee S J, Lee Y K.  Acta Mater, 2008; 56: 1482

[13] Pan J S, Zhang W M, Tian D, Gu J F, Hu M J.  Eng Sci, 2003; 5: 47

     (潘健生, 张伟民, 田东, 顾剑锋, 胡明娟. 中国工程科学, 2003; 5: 47)

[14] Michel F, Louchez P R, Samuel F H.  Trans Am Foundry-men's Soc, 1995; 103: 278

[15] Guthrie R I L, Isac M, Kim J S, Tavares R P.  Metall Mater Trans, 2000; 31B: 1031

[16] Hallam C P, Griffiths W D, Butler N D.  Mater Sci Forum, 2000; 329--330: 467

[17] Santos C A, Quaresma J W V, Garcia A.  J Alloys Compd, 2001; 319: 174

[18] Nelson C W. In: the Society of  Die Casting Engineers ed., 6th SDCE International Die Casting Congress, Cleveland, OH: SDCE, 1970: 1

[19] Hong S, Backman D G, Mehrabian R.  Metall Mater Trans, 1979; 10B: 299

[20] Dour G, Dargusch M, Davidson C, Nef A.  J Mater Process Technol, 2005; 169: 223

[21] Hamasaiid A, Dour G, Dargusch M, Loulou T, Davidson C, Savage G.In: Gandin C A, Bellet M eds.,  Modeling of Casting,Welding and Advanced Sollidification Processes. Vol.XI, Warrendale, PA: Minerals,Metals and Materials Society, 2006: 1205

[22] Guo Z P, Xiong S M, Cho S H, Choi J K.  Acta Metall Sin, 2008; 44: 433

     (郭志鹏, 熊守美, 曺尚铉, 崔正吉. 金属学报, 2008; 44: 433)

[23] Guo Z P, Xiong S M, Cho S H, Choi J K.  Acta Metall Sin, 2007; 43: 1155

     (郭志鹏, 熊守美, 曺尚铉, 崔正吉. 金属学报, 2007; 43: 1155)

[24] Guo Z P, Xiong S M, Cho S H, Choi J K.  Acta Metall Sin, 2007; 43: 1149

     (郭志鹏, 熊守美, 曺尚铉, 崔正吉. 金属学报, 2007; 43: 1149)

[25] Hou Z L, Yao S, Wang T L, Zhang X G, Jin J Z.  Trans Mater Heat Treat, 2008; 29: 157

     (候忠霖, 姚山, 王廷利, 张兴国, 金俊泽. 材料热处理学报, 2008; 29: 157)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[9] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[14] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[15] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.