Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 1005-1010    DOI: 10.3724/SP.J.1037.2012.00116
  论文 本期目录 | 过刊浏览 |
FGH4096粉末高温合金的再结晶形核机制
宁永权, 姚泽坤
西北工业大学材料学院, 西安 710072
RECRYSTALLIZATION NUCLEATION MECHANISM OF FGH4096 POWDER METALLURGY SUPERALLOY
NING Yongquan, YAO Zekun
School of Material Science and Engineering, Northwestern Polytechnical University, Xi’an 710072
全文: PDF(6413 KB)  
摘要: 利用OM和TEM对FGH4096粉末高温合金的再结晶组织进行了系统的观察和分析,证实有3种再结晶形核机制存在, 即原始颗粒边界形核、应变诱导蝶状γ'相形核和孪晶叠加形核. 通过研究微观偏析, 弯曲褶皱边界的形成和孪晶叠加效应, 原子扩散和位错运动建立了形核模型.
关键词 粉末高温合金 再结晶 形核机制    
Abstract:FGH4096 is regarded as a promising powder metallurgy superalloy for high–temperature/pressure turbine disc in aerospace industries due to its high resistance/defect tolerance and high working temperature up to 750 ℃. In the present work, OM and TEM have been employed to study the recrystallization nucleation and microstructure evolution in FGH4096 powder metallurgy superalloy. It is proved that there exist three types of recrystallization mechanisms: nucleation from previous particle boundary (PPB), strain–induced nucleation from butterfly γ' phase (SIP) and twins superposition (TS) nucleation. The physical explanation for this is given from the view of point of micro–segregation, formation of the bend fold boundary and twins superposition, atomic diffusion and dislocation movement.
Key wordspowder metallurgy superalloy    recrystallization    nucleation mechanism
收稿日期: 2012-03-05     
ZTFLH: 

TG 113

 
基金资助:

国家自然科学基金项目51101119和中国博士后基金项目20110491686资助

通讯作者: 宁永权     E-mail: ningke521@163.com
Corresponding author: Ning Yongquan     E-mail: ningke521@163.com
作者简介: 宁永权, 男, 1982年生, 博士

引用本文:

宁永权 姚泽坤. FGH4096粉末高温合金的再结晶形核机制[J]. 金属学报, 2012, 48(8): 1005-1010.
ZHU Yong-Quan. RECRYSTALLIZATION NUCLEATION MECHANISM OF FGH4096 POWDER METALLURGY SUPERALLOY. Acta Metall Sin, 2012, 48(8): 1005-1010.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00116      或      https://www.ams.org.cn/CN/Y2012/V48/I8/1005

[1] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elseriver, 2004: 10

[2] Ning Y Q, Yao Z K, Fu M W, Guo H Z. Mater Sci Eng, 2011; A528: 8065

[3] Ning Y Q, Fu M W, Yao W. Mater Sci Eng, 2012; A539: 101

[4] Ning Y Q, Yao Z K, Xie X H, Guo H Z, Tan L J, Tao Y. Acta Metall Sin, 2010; 45: 58

(宁永权, 姚泽坤, 谢兴华, 郭鸿镇, 谭立军, 陶宇. 金属学报, 2010; 45: 58)

[5] Ning Y Q, Yao Z K, Yue TW, Guo H Z, Tao Y, Zhang Y W. Rare Met Mater Eng, 2010; 39: 1235

(宁永权, 姚泽坤, 岳太文, 郭鸿镇, 陶 宇, 张义文. 稀有金属材料与工程, 2010; 39: 1235)

[6] Reed R C. The Superalloys Fundamentals and Applications. New York: Cambridge University Press, 2006: 6

[7] Ning Y Q, Yao Z K, Guo H Z, Tao Y, Zhang Y W. Key Eng Mater, 2009; 407–408: 694

[8] Zhao M L, Sun WR, Yang S L, Qi F, Guo S R, Hu Z Q. Acta Metall Sin, 2009; 45: 79

(赵美兰, 孙文儒, 杨树林, 祈峰, 郭守仁, 胡壮麒. 金属学报, 2009; 45: 79)

[9] Viswanathan G B, Sarosi P M, Henry M F, Whitis D D, Milligan W W, Mills M J. Acta Mater, 2005; 53: 3041

[10] Tiley G, Viswanathan G B, Srinivasan R, Banerjee R, Dimiduk D M, Fraser H L. Acta Mater, 2009; 57: 2538

[11] MacSleyne J, Uchic M D, Simmons J P, Graef M D. Acta Mater, 2009; 57: 6251

[12] Dunlavy M A, Shivpuri R, Semiatin S L. Mater Sci Eng, 2003; A359: 210

[13] Viswanathan G B, Sarosi P M, Whitis D H, Mills M J. Mater Sci Eng, 2005; A400–401: 489

[14] Cao F L, Qing H, Gu Y X, Guan C B, Zhou Q. Gas Turbine Exp Res, 2007; 20(3): 15

(曹凤兰, 卿华, 古远兴, 关长波, 周全. 燃气涡轮试验与研究, 2007; 20(3): 15)

[15] Liu F J, Zhang M C, Dong X, Zhang Y W. Acta Metall Sin (Engl Lett), 2007; 20: 102

[16] Zhou X M, Wang W X, Tang D Z, Yan M G. Mater Eng, 2006; (11): 53

(周晓明, 汪武祥, 唐定中, 颜鸣皋. 材料工程, 2006; (11): 53)

[17] Liu J T, Liu G Q, Hu B F, Song Y P, Qin Z R, Zhang Y W. J Univ Sci Technol Beijing, 2006; 13: 319

[18] Tian G F, Jia C C, Wen Y, Hu B F. J Univ Sci Technol Beijing, 2008; 15: 729

[19] Ning Y Q, Yao Z K, Li H, Guo H Z, Tao Y, Zhang Y W. Mater Sci Eng, 2010; A527: 961

[20] Ning Y Q, Yao Z K, Li H, Guo H Z, Tao Y, Zhang Y W. Chin J Mech Eng, 2009; 22: 925

[21] Ning Y Q, Yao Z K, Fu M W, Guo H Z. Mater Sci Eng, 2010; A527: 6968

[22] Xie X H, Yao Z K, Ning Y Q, Guo H Z, Tao Y, Zhang Y W. J Aero Mater, 2011; 31: 22

(谢兴华, 姚泽坤, 宁永权, 郭鸿镇, 陶 宇, 张义文. 航空材料学报, 2011; 31: 22)

[23] Ozols A, Sirkin H R, Vicente E E. Mater Sci Eng, 1999; A262: 64

[24] Sun X Y, Song H M, Lin Q. J Chin Soc Rare Earths, 2004; 22: 177

(孙学义, 宋红梅, 林勤. 中国稀土学报, 2004; 22: 177)

[25] Yang P, Fu Y Y, Cui Y E. Acta Metall Sin, 2001; 37: 601

(杨平, 傅云义, 崔月娥. 金属学报, 2001; 37: 601)

[26] Yi M, Xiong H B, Lin Z. Shougang Sci Technol, 2008; (1): 1

(易敏, 熊化冰, 林志. 首钢科技, 2008; (1): 1)
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[3] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[4] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[5] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[6] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[7] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[8] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[9] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[10] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[11] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[12] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[13] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[14] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[15] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.