Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1057-1066    DOI: 10.3724/SP.J.1037.2012.00115
  论文 本期目录 | 过刊浏览 |
超快速退火下超低碳钢的再结晶行为研究
侯自勇, 许云波, 吴迪
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
RECRYSTALLIZATION OF ULTRA-LOW CARBON STEEL SHEET AFTER ULTRA-RAPID ANNEALING
HOU Ziyong, XU Yunbo, WU Di
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

侯自勇 许云波 吴迪. 超快速退火下超低碳钢的再结晶行为研究[J]. 金属学报, 2012, 48(9): 1057-1066.
, , . RECRYSTALLIZATION OF ULTRA-LOW CARBON STEEL SHEET AFTER ULTRA-RAPID ANNEALING[J]. Acta Metall Sin, 2012, 48(9): 1057-1066.

全文: PDF(5502 KB)  
摘要: 对2种冷轧超低碳钢(Nb+Ti-IF钢和高Nb-IF钢)进行了再结晶退火实验, 对比研究了2种钢在超快速退火(加热速率约为300 ℃/s)下的再结晶组织和织构特征. 结果表明, 在超快速退火工艺下, 含C和Nb量较高的Nb-IF钢再结晶平均晶粒尺寸与普通退火工艺下无明显差别(均为(11.0±0.3) μm), 再结晶织构峰值{223}<472>的取向密度由普通退火工艺下的23.9降低到18.0, 且织构类型分散. 分析表明, 较高的C和Nb含量在超快速退火工艺下推迟再结晶的发生, 提高再结晶温度, 增加了其非γ取向形核所占比率, 恶化<111>//ND取向织构, 是其织构强度减弱的原因. 在超快速退火工艺下, 再结晶平均晶粒尺寸是否细化是高形核密度、极短的长大时间的晶粒细化效应与高晶界迁移速率的晶粒粗化效应相互竞争的结果, 极大变形量和细晶作用产生的高形核密度造成形核点饱和, 降低了超快速退火相对于普通退火工艺的晶粒细化效应, 是晶粒细化不明显的主要因素.
关键词 超低碳钢超快速退火再结晶组织织构    
Abstract:A new annealing technology has been developed in order to conduct fast steel annealing. The microstructure and texture of the Nb+Ti stabilized interstitial-free (IF) steel and high Nb-IF steel highly cold deformed to a reduction of 94.2% after ultra-rapid annealing (URA) process with heating rates approximately 300 oC/s were characterized by means of OM, TEM, EBSD and XRD. The experimental results indicate that the recrystallization process is significantly accelerated and the finish recrystallization temperature is increased after URA. Moreover, the fully recrystallization can be obtained in as short as about 0.41 s, compared with about 4 s in the conventional annealing (CA) process with heating rates approximately 20o C/s. In the fully recrystallized condition, the grain size and intensity of {445}<231> fiber in the Nb+Ti-IF steel, about 11.2 μm and 15.6, can be observed in one URA cycle, respectively. However, the grain size and intensity of {445}<231> fiber are 13.5 μm and 14.0, respectively, after the Nb+Ti-IF steel is subjected to one CA cycle. On the other hand, the URA has unapparently influence on grain size, within (11.0±0.3) μm in either one URA or one CA cycle, of the high Nb-IF steel, with about 18.0 intensity of {223}<472> fiber. Simultaneously, more random fiber can be found in one URA cycle than in one CA cycle with higher intensity of {223}<472> texture up to 23.9. The grain refining effect in either one URA or one CA cycle is attributed to the mutual interaction of  nucleation density, annealing time and grain boundary migration rate.
Key wordsultra-low carbon steel    ultra-rapid annealing    recrystallization    microstructure    texture
收稿日期: 2012-03-05     
ZTFLH: 

TG142.4

 
基金资助:

国家自然科学基金项目51174059和中央高校基本科研业务费项目110607004和110407003资助

作者简介: 侯自勇, 男, 1986年生, 博士生
[1] Tiitto K M, Jung C, Wray P, Garcia C I, Deardo A J. ISIJ Int, 2004; 44: 404

[2] Ghosh P, Bhattachary B, Ray R K. Scr Mater, 2007; 56: 657

[3] Verbeken K, Kestens L, Jonas J J. Scr Mater, 2003; 48: 1457

[4] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219

[5] Go J, Poole W J, Militzer M, Wells M A. Mater Sci Technol, 2003; 19: 1361

[6] Ferry M, Jones D. Scr Mater, 1998; 38: 177

[7] Salvatori I, Moore W B R. ISIJ Int, 2000; 40(Suppl): 179

[8] Atkinson M. Mater Forum, 1993; 17: 181

[9] Atkinson M. Mater Sci Eng, 1999; A262: 33

[10] Muljono D, Ferry M, Dunne D P. Mater Sci Eng, 2001; A303: 90

[11] Ferry M, Muljono D, Dunne D P. ISIJ Int, 2001; 41: 1053

[12] Reis A C C, Bracke L, Petrov R, Kaluba W J, Kestens L. ISIJ Int, 2003; 43: 1260

[13] Stockemer J, Vanden Brande P. Metall Mater Trans, 2003; 34A: 1341

[14] Hou Z Y, Xu Y B, Wu D. Chin J Mater Res, 2012; 26: 13

(侯自勇, 许云波, 吴迪. 材料研究学报, 2012; 26: 13)

[15] Deng Q, Hou Z Y, Yan J J, Li J P. J Mater Metall, 2012; 11: 38

(邓峤, 侯自勇, 燕际军, 李建平. 材料与冶金学报, 2012; 11: 38)

[16] Massardier V, Ngansop A, Fabr`egue D, Merlin J. Mater Sci Eng, 2010; A527: 5654

[17] Shi H, Atkinson M. J Northeast Univ (Nat Sci), 1989; 10: 282

(施华, Atkinson M. 东北大学学报(自然科学版), 1989; 10: 282)

[18] Hazra S S, Gazder A A, Pereloma E V. Mater Sci Eng, 2009; A524: 158

[19] Stockemer J, Van den Brande P. In: Gottstein G, Molodov D A eds., Proc 1st Int Conf on Joint, Aachen: Springer–Verlag, 2001: 1131

[20] Su Q Q, Lin D W,Wang M, Gan Q S. Shanghai Met, 2009; 31(2): 53

(苏琪琦, 林大为, 王淼, 甘青松. 上海金属, 2009; 31(2): 53)

[21] Kitano F, Urabe T, Fujita T, Nakajima K, Hosoya Y. ISIJ Int, 2001; 41: 1402

[22] Avrami M. J Chem Phys, 1941; 9: 177

[23] Johnson W A, Mehl R F. Trans AIME, 1939; 135: 416

[24] Lusk M, Jou H J. Metall Trans, 1997; 28A: 287

[25] Hutchinson W B, Ushioda K. Scand J Metall, 1984; 13: 269

[26] Urabe T, Fujita T, Yamazaki Y J. Autom Eng Jpn, 2001; 55: 13

[27] Ushioda K, Schlippenbach U V, Hutchinson W B. Text Microstruct, 1987; 7: 11

[28] De Cock T, Capdevila C, Caballero F G, Garc´?a de Andr´es C. Mater Sci Eng, 2009; A519: 9

[29] Hou Z Y, Xu Y B, Wang J F, Wu D. J Northeast Univ (Nat Sci), 2012; 33: 203

(侯自勇, 许云波, 王佳夫, 吴迪. 东北大学学报(自然科学版), 2012; 33: 203)

[30] Mart´?nez V J, Verdeja J I, Pero–Sanz J A. Mater Charact, 2001; 46: 45

[31] Saha R, Ray R K. ISIJ Int, 2008; 48: 976
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[10] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[12] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[15] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.