Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 621-628    DOI: 10.3724/SP.J.1037.2012.00082
  论文 本期目录 | 过刊浏览 |
形变及冷却速率对热轧超高强汽车钢板中纳米析出的影响
王晓南1,2,邸洪双1,杜林秀1
1. 东北大学 轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2. 苏州大学沙钢钢铁学院, 苏州 215201
EFFECTS OF DEFORMATION AND COOLING RATE ON NANO-SCALE PRECIPITATION IN HOT-ROLLED ULTRA-HIGH STRENGTH STEEL
WANG Xiaonan1,2, DI Hongshuang1, DU Linxiu1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. Shagang School of Iron and Steel, Soochow University, Suzhou 215201
引用本文:

王晓南,邸洪双,杜林秀. 形变及冷却速率对热轧超高强汽车钢板中纳米析出的影响[J]. 金属学报, 2012, 48(5): 621-628.
, , . EFFECTS OF DEFORMATION AND COOLING RATE ON NANO-SCALE PRECIPITATION IN HOT-ROLLED ULTRA-HIGH STRENGTH STEEL[J]. Acta Metall Sin, 2012, 48(5): 621-628.

全文: PDF(4244 KB)  
摘要: 为精确控制热轧780 MPa级Nb-Ti微合金化C-Mn钢中的纳米析出物(Nb, Ti)C, 利用热力模拟实验技术, 通过透射电镜观察及统计分析, 研究形变及冷却速率对纳米析出的影响规律. 结果表明, 形变可显著地提高析出物形核率, 并细化析出物平均直径; 析出物数量随冷却速率的增大逐渐减小; 既定的实验条件下, 冷却速率达到15 ℃/s可完全抑制析出物在冷却过程中形核; 随着冷却速率的增大, 析出物的形核区间由奥氏体区形核向铁素体或贝氏区转变, 析出物平均直径明显细化; 在低冷却速率条件下的变形实验钢中, 形变提高组织中的空位浓度, 促进析出物空位形核的发生; 晶界或亚晶界是过饱和空位的主要陷阱, 但空位的扩散活性很高致使低冷却速率条件下晶界或亚晶界附近的空位浓度低于析出物形核的临界形核浓度, 从而无法形核, 形成晶界附近无析出带; 无析出带宽度随冷却速率的增大而减小, 这归因于空位扩散活力随冷却速率的增大而降低.
关键词 纳米析出冷却速率形变微合金钢无析出带    
Abstract:In order to control nano-scale precipitation (Nb, Ti)C in hot-rolled 780 MPa grade C-Mn steel micro-alloyed with niobium and titanium for automobile frames, the effects of deformation and cooling rate on nano-scale precipitation were investigated by using the thermal simulation experiment technology, then through the transmission electron microscopy observation and statistical analysis. The result indicated, deformation could significantly improve density of dislocation, subgrain boundary and vacancy etc in microstructure, and promote heterogeneous nucleation of precipitation, and improve nucleation rate of precipitation and decrease the average diameter of precipitation. Deformation could improve vacancy concentration and promoted vacancy nucleation. The induction period of precipitation nucleation decrease with the increase of deformation amount and strain rate, and precipitation more easily to nucleate. Precipitation nucleation driving force was mainly supersaturation of microalloy in undeformed experimental steel, and the nucleation mechanism was mainly homogeneous nucleation. However, the nucleation mechanism was mainly heterogeneous nucleation in deformed experimental steel. In one fixed experimental deformation condition, when the cooling rate below 5℃/s, there was (Nb, Ti)C-PFZ (precipitate free zone) nearby original austenitic grain boundaries or subgrain boundaries, and the width of PFZ at cooling rate of 0.5, 1, 2 and 5℃/s were 46.9, 30.2, 28.1 and 0 nm, respectively, so the width of PFZ decreased with the cooling rate increasing. When the cooling rate reached 15℃/s, the nucleation of precipitation was totally inhibited during cooling process. The number of precipitation along with the cooling rate increases gradually decreases. With the increase of cooling rates, the nucleation zone of precipitation was transferred from austenite to ferrite or bainite, and the average diameter of precipitation was refined. Due to grain boundaries or the subgrain boundaries were main traps for supersaturated vacancy, but the diffusivity of vacancy was high, which made the vacancy concentration nearby grain boundaries or the subgrain boundaries lower than critical vacancy concentration for precipitation nucleation, so precipitate could not nucleate nearby grain boundaries or subgrain boundaries. Due to the diffusivity of vacancy was affected by temperature, when the cooling rate was slow, vacancy had enough time to diffuse and annihilate, which made wide PFZ formed. Whereas, when the cooling rate was high, the diffusivity of vacancy was reducing or disappearing, so the width of PFZ was small. In orde to ensure experimental steel had higher yield strength, austenite zone precipitation and (Nb, Ti)C-PFZ nearby boundaries should be inhabited, so the cooling rate should be more than 15 ℃/s in the practical rolling process.
Key wordsnano precipitation    cooling rate    deformation    microalloy steel    precipitate free zone
收稿日期: 2012-02-20     
基金资助:

国家重点基础研究发展计划项目2011CB606306-2和国家自然科学基金项目51101033资助

作者简介: 王晓南, 男, 1984年生, 讲师
[1] Jiao Z B, Liu J C.  Mater China, 2011; 30: 6

    (焦增宝, 刘锦川. 中国材料进展, 2011; 30: 6)

[2] Kashima T, Muka Y.  “R$\&$D” Kobe Steel Eng Rep, 2002; 52: 19

[3] Tetsuo S, Yoshimasa F, Shinjiro K.  JFE Technol Rep, 2004; 4: 25

[4] Kazuhiro S, Yoshimasa F, Shinjiro K.  JFE Technol Rep, 2007; 10: 19

[5] Misra R D K, Nathani H, Hartmann J E, Siciliano F.  Mater Sci Eng, 2005; A394: 339

[6] Lu J X, Wang G D.  Iron Steel, 2005; 40: 69

    (陆匠心, 王国栋. 钢铁, 2005; 40: 69)

[7] Sha Q Y, Li G Y, Yan P Y, Ao L G, Hao S.  Mater China, 2011; 30: 23

    (沙庆云, 李桂艳, 严平沅, 熬列格, 郝森. 中国材料进展, 2011; 30: 23)

[8] Zhou J, Kang Y L, Mao X P, Li L J, Lin Z Y.  Iron Steel, 2006; 41(Suppl.): 343

    (周建, 康永林, 毛新平, 李烈军, 林振源. 钢铁, 2006; 41(增刊): 343)

[9] Huang Q Y, Yan H W, Pan Y L, Yang J R.  Min Metall, 2008; 53: 45

(黄庆渊, 颜鸿威, 潘永林, 杨哲人. 矿冶, 2008; 53: 45)

[10] Chen C Y, Yen H W, Kao F H , Li W C, Huang C Y, Yang J R, Wang S H.  Mater Sci Eng, 2009; A499: 162

[11] Wang T P, Kao F H, Wang S H, Yang Z R, Huang C Y, Chen H R.  Mater Lett, 2011; 65: 396

[12] Wang X N, Du L X, Zhang H L, Di H S.  J Iron Steel Res, 2011; 23: 45

     (王晓南, 杜林秀, 张海仑, 邸洪双. 钢铁研究学报, 2011; 23: 45)

[13] Wang X N, Du L X, Xie H, Di H S, Gu D H.  Steel Res Int, 2011; 82: 1417

[14] Okamoto R, Borgenstam A, Agren J.  Acta Mater, 2010; 58: 4783

[15] Jia Z, Misra R D K, O'Malley R, Jansto S J.  Mater Sci Eng, 2011; A528: 7077

[16] Xu G, Gan X L, Ma G J, Luo F, Zou H.  Mater Des, 2010; 31: 2891

[17] Niakan H, Najiafizadeh A.  Mater Sci Eng, 2010; A527: 5410

[18] Olasolo M, Uranga P, Rodriguez-Ibabe J M, Lopez B.  Mater Sci Eng, 2011; A528: 2559

[19] Okamoto R, Borgenstam A, Agren J.  Acta Mater, 2010; 58: 4783

[20] Yong Q L.  Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 145

     (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 145)

[21] He X L, Shang C J, Yang S W, Wang X M, Guo H. High Performance Low Carbon Bainite Steel. Beijing: Metallurgical Industry Press, 2008: 202

     (贺信莱, 尚成嘉, 杨善武, 王学敏, 郭晖. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 202)

[22] Manohar P A, Dunne D P, Chandar T, Killmore C R.  ISIJ Int, 1996; 36: 194

[23] Kang Y L, Fu J, Liu D L, Yu H.Control of Microstructure and Properties in Thin Slab Casting and Rolling Steel.Beijing: Metallurgical Industry Press, 2006: 144

     (康永林, 傅杰, 柳得橹, 于浩. 薄板坯连铸连轧钢的组织性能控制. 北京: 冶金工业出版社, 2006: 144)

[24] Dutta B, Sellars C M.  Mater Sci Technol, 1987; 3: 197

[25] Porter D A, Easterlin K E.  Phase Transformations in Metals and Alloys.New York: Van Nostrand Reinhold Company Ltd., 1981: 303

[26] Takashi S, Shuji K, Sadao H, Akio S, Takao O, Kuniaki O.  JFE Technol Rep, 2004; 2: 1
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[5] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[6] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[7] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[8] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[9] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[10] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[11] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[12] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[13] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[14] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[15] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.