Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 989-994    DOI: 10.3724/SP.J.1037.2012.00038
  论文 本期目录 | 过刊浏览 |
TA15钛合金表面电子束毛化处理的组织特征
许恒栋1,2,赵海燕1,孟令瑶1,王西昌2,巩水利2,白秉哲3
1. 清华大学机械工程系, 北京 100084
2. 北京航空制造工程研究所, 北京 100024
3. 清华大学材料科学与工程系, 北京 100084
MICROSTRUCTURE CHARACTERISATION OF PROTRUSIONS BY ELECTRON BEAM SURFI–SCULPT ON THE SURFACE OF TA15 Ti ALLOY
XU Hengdong 1,2, ZHAO Haiyan 1, MENG Lingyao 1, WANG Xichang 2, GONG Shuili 2, BAI Bingzhe 3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2. Beijing Aeronautical Manufacture Technology Research Institute, Beijing 100024
3. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

许恒栋 赵海燕 孟令瑶 王西昌 巩水利 白秉哲 . TA15钛合金表面电子束毛化处理的组织特征[J]. 金属学报, 2012, 48(8): 989-994.
, , , , , . MICROSTRUCTURE CHARACTERISATION OF PROTRUSIONS BY ELECTRON BEAM SURFI–SCULPT ON THE SURFACE OF TA15 Ti ALLOY[J]. Acta Metall Sin, 2012, 48(8): 989-994.

全文: PDF(3707 KB)  
摘要: 利用电子束毛化技术在TA15薄板(Ti-6Al-2Zr-1Mo-1V)表面生成“毛刺”, 通过OM, SEM, EDS和XRD分析了“毛刺”的组织、元素成分和性能. 研究发现, “毛刺”组织可分为边缘区、中心区、热影响区、基体; 边缘区为粗大晶粒和大量片状马氏体, 硬度最低; 中心区为大晶粒和规则排列的片状马氏体, 硬度次低; 热影响区晶粒较小, 晶界为α相, 晶内为平行排列的片状马氏体组织, 硬度最高; 不同区域的Al含量有明显差异. “毛刺”不同区域的硬度主要取决于Al含量和晶粒尺寸.
关键词 电子束毛化技术 TA15钛合金 组织 显微硬度    
Abstract:Electron beam surfi–sculpt is a novel surface processing technology, in which electron beam is controlled by magnetic field and deflected quickly over a substrate surface to displace materials in a settled manner, thus producing customized textured surface consisting of an array of protrusions above the original surface and a corresponding array of cavities in the substrate. This technology could be used in dissimilar materials connection between metals and composites, as the protrusions on metal surface would increase the interface area, which results in great improvements in both strength and absorbed energy. It could also be applied to improve the surface coating quality by tailor–making protrusions throughout a component surface so as to enhance the adhesive capacity between coating and substrate, as well as to optimize the stress distribution that occurs in coating process. The application performance of textured surface depends on the microstructure characterisation of protrusions, while the investigation on the microstructures and mechanical properties of the protrusion is lack. In this work, electron beam surfi–sculpt was carried out to produce protrusions on TA15 (Ti–6Al–2Zr–1Mo–1V) surface through multi–beam technique. The microstructure features of protrusions were investigated by OM, SEM and XRD, and the weight percentages of alloy elements were analyzed by EDS. In addition, the micro–hardness of the four zones were measured and the results were explained by its microstructure features and weight percentages of alloy elements. It was found that four zones exist in the protrusion, namely edge zone, central zone, heat affected zone (HAZ) and substrate. The edge zone is composed of coarse grain with platelet martensite inside, whose micro–hardness is the lowest. The central zone, whose micro–hardness is the second lowest, is constituted of coarse grain with regular–layed platelet martensite; however, the grain size is smaller than that in the edge zone. The HAZ is characterized of fine grain with boundary α and parallel–layed short platelet martensite inside, plus the highest micro–hardness. The weight percentages of Al in the HAZ and the substrate were higher than that in the edge zone and the central zone, which, together with different grain size of the four zones, are the two main reasons for the micro–hardness differences of the four zones.
Key wordselectron beam surfi–sculpt    TA15 Ti alloy    microstructure    micro–hardness
收稿日期: 2012-01-16     
基金资助:

国家自然科学基金项目50505019, 50935008和50975268, 教育部新世纪优秀人才项目NCET-07-0503及浙江省科技计划项目2009C21019资助

作者简介: 许恒栋, 男, 1986年生, 硕士
[1] Dance B G I, Kellar E J C. International Pat, WO 2004/028731 A1, 2004

[2] Dance B G I. International Pat, WO 2002/094497 A3, 2002

[3] Wan Y, Xiong D S. J Mater Process Technol, 2008; 197: 96

[4] Vilhena L M, Sedlacek M, Podgornik B, Vizintin J, Babnik A, Mozina J. Tribol Int, 2009; 42: 1496

[5] Lamraoui A, Costil S, Langlade C, Coddet C. Surf Coat Technol, 2010; 205: S164

[6] Wong R C P, Hoult A P, Kim J K, Yu T X. J Mater Process Technol, 1997; 63: 579

[7] Voevodin A A, Zabinski J S. Wear, 2006: 261: 1285

[8] Liu Y, Chen D R, He Y F, Sui B, Zhao L. Tribology, 2002; 22: 477

(刘莹, 陈大融, 何云峰, 岁波, 赵 磊. 摩擦学学报, 2002; 22: 477)

[9] Wan D P, Chen B K, Shao Y M, Wang S L, Hu D J. J Appl Surf Sci, 2008; 255: 3251

[10] Liu H B, Wan D P, Hu D J. J Mater Process Technol, 2009; 209: 805

[11] Zhang K. Appl Laser, 2010; 30: 105

(张 匡. 应用激光, 2010; 30: 105)

[12] Cai C B, Ji Z S, Wang G J, Zhang H J. Trans Mater Heat Treat, 2009; 30: 111

(蔡春波, 吉泽升, 王国军, 张华军. 材料热处理学报, 2009; 30: 111)

[13] Deng Z M, Liu J, Zhao Y B, Hong Y S. J Mech Strength, 2004; 26: 154

(邓忠民, 刘敬, 赵亦兵, 洪友士. 机械强度, 2004; 26: 154)

[14] Vatsya S R, Nikumb S K. Phys Rev, 2003; 68B: 035410

[15] Wan D P, Hu D J, Liu H B, Cai L R. Chin J Lasers, 2007; 34: 1004

(万大平, 胡德金, 刘红斌, 蔡兰蓉. 中国激光, 2007; 34: 1004)

[16] Liu H B, Wan D P, Hu D J. Trans Mater Heat Treat, 2008; 29: 181

(刘红斌, 万大平, 胡德金. 材料热处理学报, 2008; 29: 181)

[17] Wang X C, Gong S L, Guo EM, Cao Z H, YuW, Song Z Y, Huang Y. Manuf Technol (Suppl), 2009: 53

(王西昌, 巩水利, 郭恩明, 曹正华, 余伟, 宋祚禹, 黄勇. 制造技术(增刊), 2009: 53)

[18] Wang X. Master Dissertation, Tsinghua University, Beijing, 2008

(王欣. 清华大学硕士学位论文, 北京, 2008)

[19] Xin S W, Zhao Y Q, Zeng W D. Titanium Ind Progress, 2007; 24: 23

(辛社伟, 赵永庆, 曾卫东. 钛工业进展, 2007; 24: 23)

[20] Glavicic M, Semiatin S L. Acta Mater, 2006; 54: 5337

[21] Zhang W F,Wang Y H, Li Y, Ma JM. Chin J Nonferrous Met, 2010; 20: 523

(张旺峰, 王玉会, 李艳, 马济民. 中国有色金属学报, 2010; 20: 523)

[22] Xin S W, Zhao Y Q, Zeng W D. Titanium Ind Progress, 2008; 25: 29

(辛社伟, 赵永庆, 曾卫东. 钛工业进展, 2008; 25: 29)

[23] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and its Application. Beijing: Chemical Industry Press, 2005: 235

(张喜燕, 赵永庆, 白晨光. 钛合金及应用. 北京: 化学工业出版社, 2005: 235)

[24] Beijing Institute of Aviation Materials. Aviation Materials Science. Shanghai: Shanghai Science and Technology Press, 1985: 234

(北京航空材料研究所. 航空材料学. 上海: 上海科学技术出版社, 1985: 234)

[25] Ворисова E A, translated by Chen S Q. Metallography Titanium Alloys. Beijing: National Defense Industry Press, 1980: 160

(Ворисова E A著, 陈石卿译. 钛合金金相学. 北京: 国防工业出版社, 1980: 160)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.