Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 379-384    DOI: 10.3724/SP.J.1037.2011.00612
  论文 本期目录 | 过刊浏览 |
不同粒径Ti粉的高速压制行为和烧结性能
闫志巧1, 2), ,陈峰1),  蔡一湘1)
1) 广州有色金属研究院, 广州 510650
2) 中南大学粉末冶金国家重点实验室, 长沙 410083
HIGH VELOCITY COMPACTION BEHAVIOR AND SINTERED PROPERTIES OF Ti POWDERS WITH DIFFERENT PARTICLE SIZES
YAN Zhiqiao1, 2), CHEN Feng1),  CAI Yixiang1)
1) Guangzhou Research Institute of Nonferrous Metals, Guangzhou 510650
2) State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083
引用本文:

闫志巧 陈峰 蔡一湘. 不同粒径Ti粉的高速压制行为和烧结性能[J]. 金属学报, 2012, 48(3): 379-384.
, , . HIGH VELOCITY COMPACTION BEHAVIOR AND SINTERED PROPERTIES OF Ti POWDERS WITH DIFFERENT PARTICLE SIZES[J]. Acta Metall Sin, 2012, 48(3): 379-384.

全文: PDF(2538 KB)  
摘要: 以平均粒径为150, 75, 48和38 μm的4种Ti粉为原料(依次定义为A, B, C和D粉末), 采用高速压制技术进行成形, 考察粉末粒径对压坯密度、最大压制力和脱模力的影响, 进一步研究粉末的高速压制特性和压坯的烧结性能. 结果表明, 高速压制的压坯密度与粉末粒径和松装密度有关. 冲击能量较小时, 压坯密度主要取决于松装密度, 而冲击能量较高时, 则主要取决于粉末粒径. 在冲击能量≦761 J下成形时, 具有最大松装密度的B粉末所获得的压坯密度最高; 进一步增大冲击能量, 平均粒径最大的A粉末所获得的压坯密度最高. 粉末粒径对压坯密度和最大压制力具有相似的影响, 并且4种粉末的最大压制力和压坯密度之间的关系均符合黄培云压制方程; 但粉末粒径对脱模力无明显影响. 试样的烧结密度随粒径的细化而增加, 同时伴随着不同程度的晶粒长大. 4种压坯经1250 ℃真空烧结后, 最终均获得了近全致密的试样.
关键词 高速压制Ti粉粒径密度黄培云压制方程    
Abstract:The Ti powder forming is more difficult through traditional pressing methods due to inductile and high hardening rate of Ti. Some advanced forming methods, although, are effective for increasing the green density, such as hot--pressing and isothermal--statistic pressing, they are too expensive. In our previous research, it has been demonstrated that compacting high green density of Ti powders would be achieved by high velocity compaction (HVC) which seems to be an attractive candidate that has an excellent balance between performance and cost in forming Ti powders. In this paper, the four Ti powders with average particle size of 150, 75, 48 and 38 μm, namely A, B, C, and D powder, were separately pressed by HVC technology. The influences of particle size on the green density, the maximum impact force and withdraw force in compacting were investigated. The compactability features of the four powders in HVC and the properties of sintered samples were studied. The results show that the green density of compacts obtained by HVC method is related with both particle size and apparent density. At relatively small impact energy, the green density of compacts is mainly determined by the apparent density of powders. While at larger impact energy, it is mainly determined by the particle size. For powders pressed at impact energy lower than 761 J, the highest green density is obtained for compacts made of B powders which has maximum apparent density. With higher impact energy, the highest green density is obtained for compacts made of A powder which has maximum particle size. It is found that the influence of particle size on the maximum impact force is similar to those on the green density, and for the four powders the relationships between the maximum impact force and the green density all comply with Huang Pei-yun equation. Particle size shows no observable influence on withdraw force. The sintered density increases with decreasing particle size of powders, accompanying with grain growth of different degrees. After vacuum sintering at 1250 ℃, nearly fully dense samples can be prepared for the compacts of four powders.
Key wordshigh velocity compaction    Ti powder    particle size    density    Huang Pei-yun equation
收稿日期: 2011-09-28     
ZTFLH: 

TF124.36

 
基金资助:

国家自然科学基金项目 51004040和粉末冶金国家重点实验室开放课题20110952K资助

作者简介: 闫志巧, 女, 1980年生, 博士
[1] Liu Y, Chen L F, Tang H P, Liu C T, Liu B, Huang B Y. Mater Sci Eng, 2006; A418: 25

[2] Abkowitz S, Abkowitz S M, Fisher H, Schwartz P J. JOM, 2004; 56: 37

[3] Liu G C, Shi Y S, Wei Q S, Wang J W. Key Eng Mater, 2010; 450: 206

[4] Saito T. JOM, 2004; 56: 33

[5] Skoglund P. Powder Metall, 2001; 44(3): 15

[6] Grant C E. Met Powder Rep, 2001; 56: 6

[7] Sethi G, Hauck E, German R M. Mater Sci Technol, 2006; 22: 955

[8] Barendvanden B, Christer F, Tomas L. Powder Metall, 2006; 49: 107

[9] Doremus P, Guennec Y L, Imbault D, Puente G. Proc Imech, Part E: J Process Mech Eng, 2010; 224: 177

[10] Souriou D, Goeuriot P, Bonnefoy O, Thomas G, Dore F. Powder Technol, 2009; 190: 152

[11] Azhdar B, Stenberg B, Kari L. Polym Test, 2006; 25: 114

[12] Jauffr`es D, Lame O, Vigier G, Dor´e F. Polymer, 2007; 48: 6374

[13] Shen Y X, Xiao Z Y, Wen L P, Pan G R, Li Y Y. Powder Metall Ind, 2006; 16(3): 19

(沈元勋, 肖志瑜, 温利平, 潘国如, 李元元. 粉末冶金工业, 2006; 16(3): 19)

[14] Qu X H, Yin H Q. Mater China, 2010; 29: 45

(曲选辉, 尹海清. 中国材料进展, 2010; 29: 45)

[15] Wang J Z, Qu X H, Yin H Q, Yi M J, Yuan X J. Powder Technol, 2009; 192: 131

[16] Chen J, Xiao Z Y, Li C J, Tang C Y, Xu Y, Zhang F B. Powder Metall Ind, 2010; 20(6): 18

(陈进, 肖志瑜, 李超杰, 唐翠勇, 许阳, 张富兵. 粉末冶金工业, 2010; 20(6): 18)

[17] Yuan X J, Zhuo Y X, Yin H Q, Guan J, Khan D F, Qu X H. Rare Met Mater Eng, 2011; 40: 086

[18] Wang J Z, Qu X H, Yin H Q, Zhou S Y, Yi M J. Chin J Nonferrous Met, 2008; 18: 1498

(王建忠, 曲选辉, 尹海清, 周晟宇, 易明军. 中国有色金属学报, 2008; 18: 1498)

[19] Yan Z Q, Chen F, Cai Y X. Powder Technol, 2011; 208: 596

[20] Yan Z Q, Chen F, Cai Y X, Cui L. Acta Metall Sin, 2010; 46: 227

(闫志巧, 陈峰, 蔡一湘, 崔亮. 金属学报, 2010; 46: 227)

[21] Eriksson M, Andersson M, Adolfsson E, Carlstr¨om E. Powder Metall, 2006; 49: 77

[22] Wang J Z, Yin H Q, Qu X H. Front Mater Sci China, 2009; 3: 319

[23] Wang J X, Qu X H, Yin H Q, Zhou S Y. Chin J Mater Res, 2008; 22: 589

(王建忠, 曲选辉, 尹海清, 周晟宇. 材料研究学报, 2008, 22: 589)

[24] Huang P Y. Powder Metallurgy Principle. 2nd Ed., Beijing: Metallurgical Industry Press, 1997: 184

(黄培云. 粉末冶金原理(第2版). 北京: 冶金工业出版社, 1997: 184)

[25] Kang S J L. Sintering: Densification, Grain growth, and Microstructure. Oxford: Butterworth–Heinemann, 2005: 53
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[3] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[4] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[5] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[6] 马健凯, 李俊杰, 王志军, 王俞鉴, 王锦程. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能[J]. 金属学报, 2021, 57(10): 1246-1257.
[7] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[8] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[9] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[10] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[11] 王资兴,黄烁,张北江,王磊,赵光普. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3): 417-426.
[12] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[13] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[14] 秦润之, 杜艳霞, 路民旭, 欧莉, 孙海明. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J]. 金属学报, 2018, 54(6): 886-894.
[15] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.