Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 271-276    DOI: 10.3724/SP.J.1037.2011.00515
  论文 本期目录 | 过刊浏览 |
热变形对Fe-0.2C-2Mn合金γ→α转变动力学的影响及理论探讨
夏苑, 杨志刚, 李昭东, 张玉朵, 张弛
清华大学材料科学与工程系先进材料教育部重点实验室, 北京 100084
EFFECT OF HOT DEFORMATION ON KINETICS OF γ→α TRANSFORMATION IN A Fe-0.2C-2Mn ALLOY AND RELATED THEORETICAL ANALYSES
XIA Yuan, YANG Zhigang, LI Zhaodong, ZHANG Yuduo, ZHANG Chi
Key Laboratory of Advanced Materials of  Ministry of Education, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

夏苑 杨志刚 李昭东 张玉朵 张弛. 热变形对Fe-0.2C-2Mn合金γ→α转变动力学的影响及理论探讨[J]. 金属学报, 2012, 48(3): 271-276.
, , , , . EFFECT OF HOT DEFORMATION ON KINETICS OF γ→α TRANSFORMATION IN A Fe-0.2C-2Mn ALLOY AND RELATED THEORETICAL ANALYSES[J]. Acta Metall Sin, 2012, 48(3): 271-276.

全文: PDF(2542 KB)  
摘要: 通过热处理实验和理论计算研究了热变形条件下Fe-0.2C-2Mn合金先共析铁素体转变动力学. 金相观察表明, 热变形细化铁素体组织, 并使铁素体形貌趋于等轴状. 在PLE/NPLE理论基础上, 运用Pillbox模型和抛物线长大模型计算了变形前后铁素体的晶界形核率和长大系数, 结果表明, 过冷奥氏体变形促进NPLE模式下铁素体形核的主要原因是奥氏体晶界面积增加和元素扩散加快, 而PLE模式下则是相变驱动力增大占主导. 最后对比分析了热变形对形核和长大的影响程度, 阐明了热变形细化不同温度区间转变的铁素体组织的机制.
关键词 热变形晶粒细化先共析铁素体动力学    
Abstractγ→α transformation is one of the most common and important reactions in steels. Lots of previous experimental researches have already evidenced that hot deformation could refine ferrite grains and remarkably improve strength and toughness of low carbon alloy steels, but relevant theoretical researches, especially quantitative descriptions still need deepening. This work, taking a Fe-0.2C-2Mn alloy as research object, investigated the effect of hot deformation on austenite→pro-eutectoid ferrite transformation by means of both thermo-mechanical experiments and theoretical analyses, in an attempt to provide theoretical basis for further grain refinement in low carbon alloy steels. OM observations showed that finer ferrite grains formed with the increase of strain and decrease of deformation temperature, and hot deformation altered the morphology of pro-eutectoid ferrite; Based on Pillbox model and parabolic growth model, grain boundary nucleation rate and parabolic growth constant were calculated respectively under hot deformation condition, both of which were demonstrated to be accelerated by deformation. Under NPLE mode, ferrite nucleation was enhanced by deformation mainly due to the increase of diffusivity and number of nucleation sites, whereas contribution of stored deformation energy to driving force played a key role under PLE mode. A comparison was made between the strengthening effect of deformation on ferrite nucleation and growth, showing that nucleation was accelerated more significantly at most temperature ranges. Thus the grain refinement mechanism of hot deformation was quantitatively explained.
Key wordshot deformation    grain refinement    pro-eutectoid ferrite    kinetics
收稿日期: 2011-08-09     
基金资助:

国家自然科学基金资助项目51071089

作者简介: 夏苑, 男, 1988年生, 博士生
[1] Tsuji N, Maki T. Scr Mater, 2009; 60: 1044

[2] Tanaka T, Aaronson H I, Enomoto M. Metall Mater Trans, 1995; A26: 561

[3] Coates D E. Metall Trans, 1972; 3A: 1203

[4] Coates D E. Metall Trans, 1973; 4A: 1077

[5] Coates D E. Metall Trans, 1973; 4A: 2313

[6] Sheng G, Yang Z G. Mater Sci Eng, 2007: A465: 38

[7] Sheng G, Yang Z G. Mater Lett, 2008: 62:1933

[8] Matsumura Y, Yada H. Trans ISIJ, 1987; 27: 492

[9] Beladi H, Kelly G L, Shokouhi A, Hodgeson P D. Mater Sci Eng, 2004; A367: 152

[10] Beladi H, Kelly G L, Shokouhi A, Hodgeson P D. Mater Sci Eng, 2004; A371: 343

[11] Adachi Y,Wakita M, Beladi H, Hodgson P D. Acta Mater, 2007; 55: 4925

[12] Dong H, Sun X J. Curr Opin Solid State Mater Sci, 2005; 9: 269

[13] Zheng C W, Xiao N M, Hao L H, Li D Z, Li Y Y. Acta Mater, 2009; 57: 2956

[14] Li Z D, Yang Z G, Zhang C, Liu Z Q. Mater Sci Eng, 2010: A527: 4406

[15] Liu Z Y, Yang Z G, Li Z D, LIU Z Q, Zhang C. Acta Metall Sin, 2010; 46: 390

(刘志远, 杨志刚, 李昭东, 刘振清, 张弛. 金属学报, 2010; 46: 390)

[16] Liu Z Y, Yang Z G, Li Z D. Acta Metall Sin, 2008; 44: 703

(刘志远, 杨志刚, 李昭东. 金属学报, 2008; 44: 703)

[17] Priestner R, de los Rios E. Met Technol, 1980; 7: 309

[18] Hickson M R, Gibbs R K, Hodgson P D. ISIJ Int, 1999; 39: 1176

[19] Hurley P J, Hodgson P D, Muddle B C. Scr Mater, 1999: 40: 433

[20] Larn R H, Yang J R. Mater Sci Eng, 1999; A264: 139

[21] Hurley P J, Hodgson P D, Muddle B C. Scr Mater, 2001; 45: 25

[22] Wang Q C, Yang Z G, Li Z D. Acta Metall Sin, 2007; 43:344

(王启超, 杨志刚, 李昭东. 金属学报, 2007; 43: 344)

[23] Lange W F, Enomoto M, Aaronson H I. Metall Trans, 1988; A19: 427

[24] Yang Z G, Enomoto M. In: Howe J M, Laughlin D E, Lee J K, eds., Int Conf on Solid–Solid Phase Transformation in Inorganic Materials, Phoenix, Arizona, USA: TMS, 2005: 47

[25] Bodin A, Seitsma J, van der Zwaag S. Scr Mater, 2001; 45: 875

[26] Bergstrom Y. Rev Poder Metall Phys Ceram, 1983; 2: 79
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[4] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[10] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[11] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[12] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[13] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[14] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[15] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.