Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 958-964    DOI: 10.3724/SP.J.1037.2011.00228
  论文 本期目录 | 过刊浏览 |
强流脉冲离子束辐照WC-Ni硬质密封材料表面改性研究
张锋刚, 朱小鹏, 王明阳, 雷明凯
大连理工大学材料科学与工程学院表面工程研究室, 大连 116024
SURFACE MODIFICATION OF WC-Ni CEMENTED CARBIDE FOR SEALS BY HIGH-INTENSITY PULSED ION BEAM IRRADIATION
ZHANG Fenggang, ZHU Xiaopeng, WANG Mingyang, LEI Mingkai
Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
引用本文:

张锋刚 朱小鹏 王明阳 雷明凯. 强流脉冲离子束辐照WC-Ni硬质密封材料表面改性研究[J]. 金属学报, 2011, 47(7): 958-964.
. SURFACE MODIFICATION OF WC-Ni CEMENTED CARBIDE FOR SEALS BY HIGH-INTENSITY PULSED ION BEAM IRRADIATION[J]. Acta Metall Sin, 2011, 47(7): 958-964.

全文: PDF(1285 KB)  
摘要: 利用离子能量为300 keV, 束流密度为300 A/cm2, 功率密度为108 W/cm2, 脉冲宽度为70 ns的强流脉冲离子束(HIPIB)对用于核主泵轴密封的WC-Ni硬质合金材料进行了表面辐照处理, 辐照次数分别为 1, 5, 10次. 利用XRD, SEM和EPMA研究了HIPIB辐照前后WC--Ni硬质合金表层相组成、表面形貌和元素分布的变化, 借助显微硬度计和环--块式磨损仪测试了辐照前后硬质合金表层的性能. 结果表明, HIPIB辐照硬质合金表层发生由六方碳化物WC向fcc碳化物β-WC1-x转变, 转变量随着辐照次数的增加而增加. HIPIB辐照引发硬质合金表层快速重熔和Ni黏结相的择优烧蚀, 形成了许多丘状表面凸起, 且随辐照次数的增加, 丘状凸起的尺寸增大, 当辐照次数增加至10次, 形成了网状“峰--谷”起伏结构的重熔烧蚀表面形貌, 且具有微区光滑致密化特征. 由于HIPIB辐照应力波的显著作用, 辐照后硬质合金表层沿深度方向显著硬化, 10次辐照后硬化层深度可达160 μm, 表面摩擦系数降低38\%, 耐磨性提高近3倍.
关键词 强流脉冲离子束硬质合金WC-Ni表面改性耐磨性    
Abstract:The WC-Ni cemented carbide, as a promising seal component material in nuclear power plant, was treated by high-intensity pulsed ion beam (HIPIB) with ion energy of 300 keV, ion current density of 300 A/cm2, i.e., at a power density of 108 W/cm2 and at a pulse duration of 70 ns up to 10 shots. The phase composition, surface morphology and element distribution in the surface of WC-Ni cemented carbide before and after HIPIB irradiation were investigated by using XRD, SEM and EPMA, and its properties were characterized by microhardness measurement and block-on-ring wear testing. It is found that the phase transformation from hexagonal WC to cubic β-WC1-x underwent in the irradiated surface layer, and the amount of β-WC1-x phase increased with increasing shot number. The surface remelting and selective ablation of the nickel binder phase resulted in the formation of hilly topography with numerous protrusions on the irradiated surfaces, and the dimension of protrusions expanded under repetitive irradiation. As increasing the irradiation up to 10 shots, a network of hill-valleys was finally produced on the irradiated surfaces but the surface is smoothed and densified in a micro scale. A hardened depth of 160 μm was obtained, which is attributable to the strong stress wave induced during the irradiation. As a result, the wear resistance of WC-Ni cemented carbides is considerably improved by a factor of 3 along with a 38% reduction in the friction coefficient after 10-shot irradiation.
Key wordshigh-intensity pulsed ion beam    WC-Ni     cemented carbide    surface modification    wear resistance
收稿日期: 2011-04-11     
基金资助:

国家重点基础研究发展计划资助项目2009CB724305

作者简介: 张锋刚, 男, 1982年生, 博士生
[1] Cappelli E, Orlando S, Pinzari F, Napoli A, Kaciulis S. Appl Surf Sci, 1999; 138–139: 376

[2] Karatas C, Yilbas B S, Aleem A, Ahsan M, Kaciulis S. J Mater Process Technol, 2007; 183: 234

[3] Li T J, Lou Q H, Dong J X, Wei Y R, Liu J R. Appl Surf Sci, 2001; 172: 51

[4] Gnyusov S, Tarasov S, Ivanov Yu, Rothstein V. Wear, 2004; 257: 97

[5] Kano S, Inoue T. Surf Coat Technol, 2004; 257: 97

[6] Gnyusov S, Tarasov S, Ivanov Yu, Rothstein V. Wear, 2004; 257: 97

[7] Davis H A, Remnev G E, Stinnett R W, Yatsui K. MRS Bull, 1996; 21: 58

[8] Yilbas B S, Shuja S Z, Arif A, Gondal M A. J Mater Process Technol, 2003; 135: 6

[9] Lei M K, Zhu X P, Liu C, Xin J P, Han X G, Li P, Dong Z H, Wang X, Miao S M. J Manuf Sci Eng, 2009; 131: 031013

[10] Zhu X P, Lei M K, Dong Z H, Ma T C. Rev Sci Instrum, 2003; 74 : 47

[11] Zhang H T, Wang T M, Wang C, Wang W J, Han B X, Yan S, Zhao W J, Han Y F. Rare Met Mater Eng, 2003; 32: 216

(张洪涛, 王天民, 王聪, 王文军, 韩宝玺, 颜莎, 赵渭江, 韩雅芳. 稀有金属材料工程, 2003; 32: 216)

[12] Wang X, Zhang J S, Lei M K. Acta Metall Sin, 2007; 43: 393

(王旭, 张俊善, 雷明凯. 金属学报, 2007; 43: 393)

[13] Uglov V V, Anishchik V M, Astashynski V M, Cherenda N N, Gimro I G, Kovyazo A V. Surf Coat Technol, 2005; 200: 245

[14] Gromilov S A, Kinelovskii S A, Kireenko I B. Combust, Explos Shock Waves, 2003; 39: 601

[15] Zhu X P, Lei M K, Dong Z H, Miao S M, Ma T C. Surf Coat Technol, 2003; 173: 105

[16] Jia K, Fischer T E. Wear, 1996; 200: 206

[17] Satio H, Iwabuchi A, Shimizu T. Wear, 2004; 261: 126
[1] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[3] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[4] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[5] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[6] 林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017, 53(10): 1284-1302.
[7] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[8] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[9] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
[10] 刘晓波, 赵宇光. 不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*[J]. 金属学报, 2014, 50(6): 753-761.
[11] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.
[12] 罗新民,陈康敏,张静文,鲁金忠,任旭东,罗开玉,张永康. Al和铝合金激光冲击表面改性的位错机制[J]. 金属学报, 2013, 49(6): 667-674.
[13] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
[14] 梁秀兵 张志彬 陈永雄 徐滨士. 铝基非晶纳米晶复合涂层研究[J]. 金属学报, 2012, 48(3): 289-297.
[15] 王艳秋 王岳 陈派明 邵亚薇 王福会. 7075铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能[J]. 金属学报, 2011, 47(4): 455-461.