Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1379-1390    DOI: 10.3724/SP.J.1037.2010.00468
  综述 本期目录 | 过刊浏览 |
核电高温高压水中不锈钢和镍基合金的腐蚀机制
韩恩厚1, 2), 王俭秋1, 2), 吴欣强1, 2), 柯伟1, 2)
1) 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
2) 中国科学院金属研究所辽宁省核电材料安全与评价技术重点实验室, 沈阳 110016
CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER
HAN En-Hou1, 2) , WANG Jianqiu1, 2) , WU Xinqiang1, 2) , KE Wei
1) State Key Laboratory for Corrosion and Protection of Metals, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

韩恩厚 王俭秋 吴欣强 柯伟. 核电高温高压水中不锈钢和镍基合金的腐蚀机制[J]. 金属学报, 2010, 46(11): 1379-1390.
, , , . CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. Acta Metall Sin, 2010, 46(11): 1379-1390.

全文: PDF(2405 KB)  
摘要: 综述了近年来在核电高温高压水中不锈钢和镍基合金的腐蚀电化学行为规律, 以及材料表面膜的成分、组织结构和电子特征. 通过系统分析水介质化学和材料微观结构对表面膜的影响, 试图把膜的特性与腐蚀电化学行为联系起来. 讨论了核电高温高压水中材料的腐蚀机制, 提出核电高温高压水中不锈钢和镍基合金的腐蚀机制与常温时不同, 高温下是由电化学与氧化联合控制, 而不是传统意义上常温下的纯电化学腐蚀. 表面膜为双层结构, 外层疏松, 而内层是由纳米晶构成的具有半导体性质的膜层, 内层是控制腐蚀的关键. 材料的微观成分与组织结构、表面加工状态、水化学参数是影响核电用材料高温高压水中腐蚀的重要因素. 腐蚀产生的氧化物的楔形力导致缺陷前端产生局部拉应力, 即使在宏观压应力区, 缺陷前端的局部拉应力仍可导致应力腐蚀开裂的发生与扩展. 氧化物楔形力的作用是促进压应力下产生应力腐蚀开裂的重要原因.
关键词 不锈钢镍基合金腐蚀应力腐蚀电化学核电站表面膜    
Abstract:The electrochemical corrosion behavior and the chemical components, structures and electronic characters of oxide films for stainless steels and Ni base alloys used in nuclear power plant were reviewed. The effects of water chemistry and microstructure of materials on oxide films were analyzed in order to relate the oxide film properties with electrochemical behaviors. The corrosion mechanism of the materials used in high temperature pressurized water is different with that used in room temperature water. The corrosion mechanism of the materials in high temperature pressurized water is controlled by electrochemistry and oxidation, whereas in room temperature water it is controlled only by electrochemistry. Oxide films has double-layer structure. The outer layer is porous, and the inner layer is composed by nano-crystalline and has semiconductivity which controlled the corrosion process. The microstructure, chemical composition, surface status of materials and water chemistry parameters are the key parameters which affect corrosion. The wedging stress of oxide inside the flaw could induce localized tensile stress at the tip of the flaw, which caused stress corrosion cracking initiation and propagation even in macro-compressive stressed region. The wedging stress of oxide is the key factor to induce stress corrosion cracking in compressive stressed region.
Key wordsstainless steel    nickle base alloy    corrosion    stress corrosion    electrochemistry    nuclear power plant    surface oxide film
收稿日期: 2010-09-15     
基金资助:

国家重点基础研究发展计划项目2006CB6050和国家重大专项项目2010ZX06004-009资助

作者简介: 韩恩厚, 男, 1961年生, 研究员
[1] Macdonald D D, Scott A C, Wentrcek P. J Electrochem Soc, 1979; 126: 1618 [2] Macdonald D D, Liu C, Michael M P. In: Kearns J R, Scully J R, eds., Electrochemical Noise Measurements on Carbon and Stainless Steel in High Subcritical and Supercritical Aqueous Environments. ASTM STP 1277, 1996: 247 [3] Lvov S N, Zhou X Y, Macdonald D D. J Electroanal Chem, 1999; 463: 146 [4] Zhou X Y, Lvov S N, Wei X J, Benning L G, Macdonald D D. Corros Sci, 2002; 44: 841 [5] Zhang L, Han E H, Ke W, Guan H. Chin Pat, ZL 02132544.8, 2005 (张 丽, 韩恩厚, 柯伟, 关辉. 中国专利, ZL 02132544.8, 2005) [6] Zhang L, Han E H, Ke W, Guan H. Chin Pat, ZL 02274025.2, 2003 (张 丽, 韩恩厚, 柯 伟, 关 辉. 中国实用新型专利, ZL 02274025.2, 2003) [7] Guan H, Zhang L, Han E H, Ke W. Chin Pat, ZL 02274026.0, 2003 (关辉, 张丽, 韩恩厚, 柯 伟. 中国实用新型专利, ZL 02274026.0, 2003) [8] Sun H, Wu X Q, Han E H. Chin Pat, CN101470093, 2009 (孙华, 吴欣强, 韩恩厚. 中国专利, CN101470093, 2009) [9] Sun H, Wu X Q, Han E H. Chin Pat, CN101470094, 2009 (孙华, 吴欣强, 韩恩厚. 中国专利, CN101470094, 2009) [10] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston: NACE International, 1974: 121 [11] Huang J B, Wu X Q, Han E H. Corros Sci, 2009; 51: 2976 [12] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840 [13] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2565 [14] Sun M C, Wu X Q, Zhang Z E, Han E H. Corros Sci, 2009; 51: 1069 [15] Kuang W J, Han E H, Wu X Q, Rao J C. Corros Sci, 2010; 52: 3654 [16] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996 [17] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309 [18] Gao X, Wu X Q, Guan H, Han E H. J Supercrit Fluids, 2007; 42: 157 [19] Morrison S R. Electrochemistry at Semiconductors and Oxidized Metal Electrodes. New York: Plenum Press, 1980: 113 [20] Macdonald D D. J Electrochem Soc, 1992; 139: 3434 [21] Hakiki N E, Montemor M F, Ferreira M G S, Belo M D. Corros Sci, 2000; 42: 687 [22] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931 [23] Meng F J, Wang J Q, Han E H, Ke W. Corros Sci, 2010; 52: 927 [24] Hou J, Wang J Q, Han E H, Ke W. Mater Sci Eng, 2009; A518: 19 [25] Meng F J, Wang J Q, Han E H, Ke W. Corros Sci, 2009; 51: 2761 [26] Meng F J, Han E H, Wang J Q, Zhang Z M, Ke W. Electrochem Acta, 2010, doi:10.1016/j.electacta.2010.08.028 [27] Wang J Q, Zhang Z M, Han E H, Ke W. 6th SG Conference, Toronto, 2009 [28] Dan T C, Shoji T, Lu Z P, Sakaguchi K, Wang J Q, Han E H, KeW. Corros Sci, 2010; 52: 1228 [29] Hou J, Peng Q J, Sakaguchi K, Takeda Y, Kuniya J, Shoji T. Corros Sci, 2010; 52: 1098
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[7] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[8] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[9] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[10] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[11] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[14] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[15] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.