Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1347-1364    DOI: 10.3724/SP.J.1037.2010.00437
  论文 本期目录 | 过刊浏览 |
不锈钢材料的高效率焊接新工艺
陆善平, 董文超, 李殿中, 李依依
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
HIGH EFFICIENCY WELDING PROCESS FOR STAINLESS STEEL MATERIALS
LU Shanping, DONG Wenchao, LI Dianzhong, LI Yiyi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

陆善平 董文超 李殿中 李依依. 不锈钢材料的高效率焊接新工艺[J]. 金属学报, 2010, 46(11): 1347-1364.
, , , . HIGH EFFICIENCY WELDING PROCESS FOR STAINLESS STEEL MATERIALS[J]. Acta Metall Sin, 2010, 46(11): 1347-1364.

全文: PDF(2252 KB)  
摘要: 针对不锈钢材料钨极惰性气体保护(TIG)焊熔深浅、焊接效率低的缺点开发了大深宽比高效率TIG焊接新工艺, 包括活性剂焊接工艺、混合气体联合保护焊工艺和双层气流保护焊工艺. 与涂覆活性剂法相比, 混合气体法不仅可获得深熔深, 而且操作方便, 易于实现工业化; 双层气流法可有效避免混合气体法中电极氧化烧损现象. 实验和模拟结果表明: 熔池中活性元素O含量变化导致的Marangoni对流方向的变化是TIG焊熔深增加的主要因素, 焊接过程中调整液态熔池中活性组元含量可获得大深宽比焊缝. 高效率TIG焊接工艺对焊接规范 (焊接速度、焊接电流和电极间距)不敏感, 有利于在工业生产中推广应用.
关键词 不锈钢高效率焊接活性元素Marangoni对流熔池形貌    
Abstract:The high efficiency tungsten inert gas (TIG) welding process has been developed, including active flux welding process, mixed shielded welding process and double shielded welding process, to increase the weld depth/width ratio (D/W$) of conventional TIG welding method. Compared to the active flux method, mixed shielding method can make penetration deeper and the industrialization can be realized easily due to the simplification in operation. Double shielded method can avoid the oxidation of tungsten electrode. The results of experiment and simulation show that the change of the Marangoni convection direction which arises from the adjustment of the oxygen content in the weld pool is one of the main factors contributing to the increase in TIG weld penetration, and the large D/W ratio can be obtained by adjusting the active element content in the liquid pool. High efficiency TIG welding process is not sensitive to welding parameters (welding speed, welding current and electrode gap) and therefore is suitable to be applied in industry easily.
Key wordsstainless steel    high efficiency welding process    active element    oxygen    Marangoni convection    weld pool shape
收稿日期: 2010-08-30     
基金资助:

国家自然科学基金资助项目50874101

作者简介: 陆善平, 男, 1970年生, 研究员
[1] Gurevich S M, Zamkov V N, Kushmienko N A. Avtom Svarka, 1965; 9: 1 [2] Gurevich S M, Zamkov V N. Avtom Svarka, 1966; 12: 13 [3] Ludwig H C. Weld J, 1968; 47: 234s [4] Lucas W, Howse D S. Weld Met Fabr, 1996; 64: 11 [5] Howse D S, Lucas W. Sci Technol Weld Joi, 2000; 15: 189 [6] Tanaka M, Shimizu T, Terasaki H, Ushio M, Koshi–ishi F, Yang C L. Sci Technol Weld Join, 2000; 5: 397 [7] Anderson P C J, Wiktorowicz R. Weld Met Fabr, 1996; 64: 108 [8] Paskell T, Lundin C, Castner H. Weld J, 1997; 76: 57s [9] Modenesi P J, Apolinario E R, Pereira I M. J Mater Proc Technol, 2000; 9: 260 [10] Kou M, Sun Z, Pan D. Sci Technol Weld Join, 2001; 6: 17 [11] Savitskii M M, Leskov G I. Avtom Svarka, 1980; 9: 17 [12] Lowke J J, Tanaka M, Ushio M. The 57th Annual Assembly of International Institute of Welding. Osaka, Japan, 2004, IIW Doc. 212–1053–04 [13] Heiple C R, Burgardt P. Weld J, 1985; 64: 159s [14] Heiple C R, Roper J R. Weld J, 1982; 61: 97s [15] Heiple C R, Roper J R, Stagner R T, Aden R J. Weld J, 1983; 62: 72s [16] Heiple C R, Roper J R. Weld J, 1981; 60: 143s [17] Leconte S, Paillard P, Chapelle P. Sci Technol Weld Join, 2006; 11: 389 [18] Leconte S, Paillard P, Chapelle P. Sci Technol Weld Join, 2007; 12: 120 [19] Lu S P, Fujii H, Sugiyama H, Nogi K. Metall Mater Trans, 2003; 34A: 1901 [20] Lu S P, Fujii H, Sugiyama H, Tanaka M, Nogi K. ISIJ Int, 2003; 43: 1590 [21] Lu S P, Fujii H, Nogi K. Scr Mater, 2004; 51: 271 [22] Lu S P, Fujii H, Nogi K. Sci Technol Weld Join, 2004; 9: 272 [23] Lu S P, Fujii H, Nogi K. Mater Sci Eng, 2004; A380: 290 [24] Lu S P, Fujii H, Nogi K. J Mater Sci Technol, 2006; 22: 359 [25] Lu S P, Fujii H, Nogi K, Sato T. Sci Technol Weld Join, 2007; 12: 689 [26] Lu S P, Fujii H, Nogi K. J Mater Sci Technol, 2010; 26: 170 [27] Wu C H, Hao D Q. Physical Chemistry. 1st Ed., Beijing: Machine Building Press, 1988: 138, 287 (吴长春, 郝德庆. 物理化学. 第一版, 北京: 机械工业出版社, 1988: 138, 287) [28] Kraus H G. Weld J, 1989; 68: 269s [29] Bad’yanov B N, Davdov V A, Ivanov V A. Avtom Svarka, 1974; 1: 11 [30] Bad’yanov B N. Avtom Svarka, 1975; 1: 74 [31] Palmer T A, DebRoy T. Weld J, 1996; 75: 197s [32] Sato Y, Dong W, Kokawa H, Kuwana T. ISIJ Int Suppl, 2000; 40: S20 [33] Wada H, Pehlke R D. Metall Trans, 1977; 8B: 675 [34] Dong W, Kokawa H, Sato Y, Tsukamoto S. Metall Mater Trans, 2003; 34B: 75 [35] Katz J D, Kiong T B. Metall Trans, 1989; 20B: 175 [36] Palmer T A, DebRoy T. Sci Technol Weld Join, 1998; 3: 190 [37] Zhu P Y, Lowke J J, Morrow R. J Phys, 1992; 25D: 1221 [38] Lowke J J, Kovitya P, Schmidt H P. J Phys, 1992; 25D: 1601 [39] Zhu P Y, Lowke J J, Morrow R, Haidar J. J Phys, 1995; 28D: 1369 [40] Lowke J J, Morrow R, Haidar J. J Phys, 1997; 30D: 2033 [41] Scott D A, Kovitya P, Haddad G N. J Appl Phys, 1989; 66: 5232 [42] McKelliget J, Szekely J. Metall Trans, 1986; 17A: 1139 [43] Bini R, Monno M, Boulos M I. J Phys, 2006; 39D: 3253 [44] Ushio M, Szekely J, Chang C W. Iron Steel, 1981; 6: 279 [45] Wu C S, Ushio M, Tanaka M. Compt Mater Sci, 1997; 7: 308 [46] Lu S P, Dong W C, Li D Z, Li Y Y. Compt Mater Sci, 2009; 45: 327 [47] Sahoo P, DebRoy T, McNallan M J. Metall Mater Trans, 1988; 19B: 483 [48] DongWC, Lu S P, Li D Z, Li Y Y. Acta Metall Sin, 2008; 44: 249 (董文超, 陆善平, 李殿中, 李依依. 金属学报, 2008; 44: 249) [49] Lu S P, Dong W C, Li D Z, Li Y Y. Sci Tech Weld Join, 2009; 14: 509 [50] Hsu K C, Etemadi K, Pfender E. J Appl Phys, 1983; 54: 1293 [51] Nestor O H. J Appl Phys, 1962; 33: 1638
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[5] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[6] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 曹姝婷, 张少华, 张健. GH4061合金在高压富氧环境下的燃烧行为[J]. 金属学报, 2023, 59(4): 547-555.
[9] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[10] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[11] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[12] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[13] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[14] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[15] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.