Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 251-256    DOI: 10.3724/SP.J.1037.2010.00393
  论文 本期目录 | 过刊浏览 |
Ti-Mo全铁素体基微合金高强钢纳米尺度析出相
段修刚, 蔡庆伍, 武会宾
北京科技大学冶金工程研究院, 北京 100083
Ti-Mo FERRITE MATRIX MICRO-ALLOY STEEL WITH NANOMETER-SIZED PRECIPITATES
DUAN Xiugang, CAI Qingwu, WU Huibin
Research Institute of Metallurgical Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

段修刚 蔡庆伍 武会宾. Ti-Mo全铁素体基微合金高强钢纳米尺度析出相[J]. 金属学报, 2011, 47(2): 251-256.
, , . Ti-Mo FERRITE MATRIX MICRO-ALLOY STEEL WITH NANOMETER-SIZED PRECIPITATES[J]. Acta Metall Sin, 2011, 47(2): 251-256.

全文: PDF(1268 KB)  
摘要: 利用OM, SEM, TEM, EDS和SAEDP等方法对4种不同Ti含量的低碳Ti-Mo全铁素体基体微合金钢中析出相的尺寸、形貌、分布特征和类型进行了研究. 结果表明, 钢中存在2种尺寸差异明显的析出相: 一种为纳米尺度粒子, 是 Ti和Mo的复合碳氮化物, 尺寸小于10 nm, 呈球形, 主要为晶内析出, 呈链状或弥散分布, 位错节点和位错网是纳米尺度析出相的优先形核位置: 另一种为大颗粒析出相, 是Ti的碳氮化物, 数量很少, 尺寸为200-300 nm, 呈方形, 带有“帽口”. 常温和高温拉伸实验表明, 全铁素体纳米尺度析出钢具有良好的力学性能, 其中No.4钢在600℃屈服强度仍然维持在约300 MPa, 具有良好的高温性能.
关键词 Ti-Mo全铁素体纳米尺度析出相 形貌成分 析出规律 高温性能    
Abstract:The morphology, size, distribution and types of precipitate particles were studied by using OM, SEM, TEM, EDS and SAEDP for Ti-Mo low-carbon ferrite matrix micro-alloy steel with four different titanium contents. Experimental results indicated that there were two kinds of particles with obvious different sizes in ferrite matrix, one was nanometer sized particles, which were smaller than 10 nm, the composition of these particles was compound carbonitride of Ti and Mo. These particles precipitated in chains or dispersed in the interior of grains. Dislocation nodes and the dislocation network were preferential nucleation sites for these particles. Another kind of particles was titanium carbonitride larger particles with a “cap” and few in number in ferrite matrix. Their size was about 200 to 300 nm and morphology was square. Tensile experimental results at room temperature and high temperatures showed that ferrite matrix micro-alloy steel with nanometer sized had good mechanical properties. No.4 steel had good performance at 600 ℃ with a yield strength of about\linebreak 300 MPa.
Key wordsTi-Mo micro-alloy steel    nanometer sized precipitate    morphology    composition    precipitation law    high temperature property
收稿日期: 2010-08-10     
ZTFLH: 

TG142.4

 
基金资助:

“十一五”国家科技支撑计划资助项目2006BE03A0

作者简介: 段修刚, 男, 1972年生, 博士生
[1] Cao J C. PhD Thesis, Kunming University of Science and Technology, 2006

(曹建春. 昆明理工大学博士学位论文, 2006)

[2] Gladman T. Mater Sci Technol, 1999; 15: 30

[3] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 15

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 15)

[4] Andrade H L, Akben M G, Jonas J J. Metall Trans, 1983; 14A: 1967

[5] Lee W B, Hong S G, Park C G, et al. Metall Mater Trans, 2002; 33A: 1689

[6] Lee W B, Hong S G, Park C G. Scr Mater, 2000; 43: 319

[7] Yang S W, He X L, Chen M D. Mater Sci Technol, 1994; 12(2): 49

(杨善武, 贺信莱, 陈梦滴. 材料科学与工程, 1994; 12(2): 49)

[8] Wang Z D, Qu J B, Liu X H. Acta Metall Sin, 2000; 36: 618

(王昭东, 曲锦波, 刘相华. 金属学报, 2000; 36: 618)

[9] He X L, Shang C J, Yang S W. High Performance Low Carbon Bainite Steel/Ingredients, Process, Microstructure, Properties and Application. Beijing: Metallurgical Industry Press, 2008: 152

(贺信来, 尚成嘉, 杨善武. 高性能低碳贝氏体钢--成分、工艺、组织、性能与应用. 北京, 冶金工业出版社, 2008: 152)

[10] Craven A J, He K, Garvie L A J, Baker T N. Acta Mater, 2000; 48: 3857

[11] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163

[12] Villars P, Calvert L D. Metals Park(USA OH): ASM, 1985: 52

[13] Yu W. PhD Thesis, University of Science and Technology Beijing, 2008

(余伟. 北京科技大学博士学位论文, 2008)

[14] DeArdo A J. Mater Sci Forum, 1998; 284–286: 15

[15] FunakawaY, Shiozaki T, Tomita K. ISIJ Int, 2004; 44, 1945

[16] Cao J C, Yong Q L, Liu Q Y. Trans Mater Heat Treat, 2006; 27(5): 51

(曹建春, 雍岐龙, 刘清友. 材料热处理学报, 2006; 27(5): 51)

[17] Bacroix B, Akben M G, Jonas J J. Warrendale: A Publication of the Metallurgy Society of AIME, 1982: 293

[18] Lee W B, Hong S G, Park C G, Kim K H, Park S H. Scr Mater, 2000; 43: 319

[19] Akben M G, Baeroix B, Jonas J J. Acta Metall, 1983; 31: 161

[20] Maruyama N, Uemori R, Suriyama M. Mater Sci Eng, 1998; A250: 2
[1] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[4] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[5] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[6] 汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
[7] 王聪, 张进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展[J]. 金属学报, 2021, 57(9): 1126-1140.
[8] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[9] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[10] 孙晓峰, 宋巍, 梁静静, 李金国, 周亦胄. 激光增材制造高温合金材料与工艺研究进展[J]. 金属学报, 2021, 57(11): 1471-1483.
[11] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[12] 王明康, 苑峻豪, 刘宇峰, 王清, 董闯, 张中伟. TiZr-Nb二元合金β结构稳定性和力学性能的影响[J]. 金属学报, 2021, 57(1): 95-102.
[13] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[14] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[15] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.