Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1215-1222    DOI: 10.3724/SP.J.1037.2010.00265
  论文 本期目录 | 过刊浏览 |
一种低碳钒微合金钢的动态再结晶与析出行为
陈礼清1, 赵阳1, 徐香秋2, 刘相华1
1. 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2. 中国第一汽车集团公司技术中心, 长春 130011
DYNAMIC RECRYSTALLIZATION AND PRECIPITATION BEHAVIORS OF A KIND OF LOW CARBON V–MICROALLYED STEEL
CHEN Liqing 1, ZHAO Yang 1, XU Xiangqiu 2, LIU Xianghua 1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. R & D Center, FAW Group Corporation, Changchun 130011
引用本文:

陈礼清 赵阳 徐香秋 刘相华. 一种低碳钒微合金钢的动态再结晶与析出行为[J]. 金属学报, 2010, 46(10): 1215-1222.
, , . DYNAMIC RECRYSTALLIZATION AND PRECIPITATION BEHAVIORS OF A KIND OF LOW CARBON V–MICROALLYED STEEL[J]. Acta Metall Sin, 2010, 46(10): 1215-1222.

全文: PDF(1855 KB)  
摘要: 利用热力模拟实验技术、OM及TEM等, 研究了一种低碳含V微合金钢在温度为900-1150℃及应变速率为0.01-10 s-1条件下奥氏体动态再结晶和析出行为. 采用回归法确定了该微合金钢的热变形激活能和表观应力指数,建立了该钒微合金钢的热加工方程; 根据应变硬化率与应力的P-J方法, 结合高阶多项式拟合, 精确确定了动态再结晶临界应变值, 获得了临界应变、峰值应变与Z参数之间的关系; 最后, 研究了低应变速率变形时该钢中V(C, N)粒子的动态析出行为. 结果表明, 在某一变形温度和应变速率下, 随着应变的进行,V(C, N)粒子的平均尺寸增加, 且尺寸分布范围变宽; 再结晶驱动力和钉扎力的计算结果表明, 一旦动态再结晶开始发生, 动态析出就不能阻止动态再结晶过程的进行.
关键词 V微合金钢 动态再结晶 激活能 临界应变 动态析出    
Abstract:By using thermo–mechanical simulator, OM and TEM, the dynamic recrystallization (DRX) and precipitation behaviors of a kind of low carbon V–microalloyed steel have been investigated at temperatures ranging from 900 to 1050℃ and strain rates from 0.01 to 10 s−1. The activation energy (Qdef ) for hot deformation of this kind of V–microalloyed steel was calculated to be 341.97 kJ/mol by regression analysis, while the apparent stress exponent (n) was calculated to be 4.24. The equation describing the hot working process was also obtained. The critical strain for DRX was accurately determined based on the P–J method and high order polynomial fitting between strain hardening rate and true stress, and mathematical models of critical strain and peak strain versus Z parameter were deduced. The dynamic precipitation behavior of V(C, N) particles at low strain rate was further investigated. The results show that with increasing the strain, the average size of V(C, N) particles increases and the size distribution of the precipitates become wide. The calculations of the driving force for recrystallization and pinning force show that once the dynamic recrystallization take place, the dynamic precipitation could not prevent dynamic recrystallization from occurring.
Key wordsV–microalloyed steel    dynamic recrystallization    activation energy    critical strain    dynamic precipitation
收稿日期: 2010-06-03     
基金资助:

教育部新世纪优秀人才计划支持项目NCET-06-0285和辽宁省教育厅创新团队基金资助

作者简介: 陈礼清, 男, 1965年生, 教授, 博士
[1] Poliak E I, Jonas J J. Acta mater, 1996; 44: 127 [2] Hansen S S, Vander Sande J B, Cohen M. Metall Mater Trans, 1980; 11A: 387 [3] Shanmugum S, Misra R D K, Mannering T, Panda D, Jansto S G. Mater Sci Eng, 2006; 437: 436 [4] Miyamoto G, Shinyoshi T, Yamaguchi J, Furuhara T, Maki T, Uemori U. Scr Mater, 2003; 48: 371 [5] Misra R D K, Weatherly G C, Hartmann J E, Boucek A J. Mater Sci Technol, 2001; 17: 1119 [6] Medina S F, Gomez M, Rancel L. Acta Mater, 2008; 58: 1000 [7] Medina S F, Hernandez C A. Acta Mater, 1996; 44: 165 [8] Ma L Q, Yuan X Q, Liu Z Y, Zhang P J, Jiao S H, Wu D, Wang G D. J Iron Steel Res, 2006; 18: 47 (马立强, 袁向前, 刘振宇, 焦四海, 吴 迪, 王国栋. 钢铁研究学报, 2006; 18: 47) [9] Fernandez A I, Uranga P, Lopez B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 368 [10] Arribas M, Lopez B, Rodriguez-Ibabe J M. Mater Sci Eng, 2008; A485: 384 [11] Sellars C M, Tegart W J M. Mem Sci Rev Met, 1966; 63: 734 [12] Karhausen K, Kopp R. Metal working, 1992; 63: 253 [13] Medina S F, Hernandez C A. Acta Mater, 1996; 44: 142 [14] Cao J R, Liu Z D, Cheng S L, Yang G, Xie J X. Acta Metall Sin, 2007; 43: 37 (曹金荣, 刘正东, 程世长, 杨 钢, 谢建新. 金属学报, 2007; 43: 37) [15] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 50 [16] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 686 [17] Akben M G, Weiss I, Jonas J J. Acta metall, 1981; 29: 114 [18] Lee K J. Scr Mater, 1999; 40: 840 [19] Tiitto K, Fitzsimons G, DeArdo A J. Acta metall, 1983; 31:1167 [20] Roberts W, Ahlblom B. Acta metall, 1978; 26
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[9] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[10] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[11] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[12] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[13] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[14] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[15] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.