Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 561-568    DOI: 10.3724/SP.J.1037.2009.00472
  论文 本期目录 | 过刊浏览 |
一步法制备含扩散阻挡层的多层体系及其界面结合强度
李伟洲1; 2); 王启民1); 宫骏1); 孙超1); 姜辛3)
1) 中国科学院金属研究所金属腐蚀与防护国家重点实验室; 沈阳 110016
2) 广西大学有色金属及材料加工新技术教育部重点实验室; 南宁 530004
3) Institute of Materials Engineering; University of Siegen; Siegen 57076; Germany
ONE-STEP DEPOSITION AND INTERFACIAL ADHESIVE STRENGTH OF THE MULTILAYER SYSTEM WITH A DIFFUSION BARRIER
LI Weizhou1; 2);  WANG Qimin1);  GONG Jun1);  SUN Chao1);  JIANG Xin3)
1) State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2) Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; Ministry of Education; Guangxi University; Nanning 530004
3) Institute of Materials Engineering; University of Siegen; Siegen 57076; Germany
引用本文:

李伟洲 王启民 宫骏 孙超 姜辛. 一步法制备含扩散阻挡层的多层体系及其界面结合强度[J]. 金属学报, 2010, 46(5): 561-568.
, , , , . ONE-STEP DEPOSITION AND INTERFACIAL ADHESIVE STRENGTH OF THE MULTILAYER SYSTEM WITH A DIFFUSION BARRIER[J]. Acta Metall Sin, 2010, 46(5): 561-568.

全文: PDF(1202 KB)  
摘要: 

为抑制合金元素的互扩散, 在Ni-Cr-Al-Y-Si涂层和DSM11基体间通过电弧离子镀技术一步制备了含扩散阻挡层 (DB)和黏结层(BC)的多层体系Ni-Cr-Al-Y-Si/DB/BC/DSM11. 由恒温氧化、循环氧化和粘胶拉伸实验考察了涂层的抗氧化性、 DB阻挡元素扩散能力和体系的界面结合强度. 结果表明, 含扩散阻挡层的多层能很好地保护基体材料, 经过1050 ℃恒温氧化100 h后, 试样表面形成连续致密的Al2O3膜, 外层中仅检测到微量的来自基体的合金元素; 经过1050 ℃↔室温(RT)循环氧化100 cyc后, DB与两侧材料的结合保持良好. 退火多层体系的界面结合强度达到63.6 MPa, 比不连续法制备的Ni-Cr-Al-Y/Cr-O-N/DSM11体系提高了约20 MPa. 一步法制备能提高含扩散阻挡层多层体系的界面结合强度, DB在恒温和循环氧化过程中能保持很好的抑制元素扩散的能力.

关键词 扩散阻挡层涂层抗氧化结合强度一步沉积法    
Abstract

M-Cr-Al-Y (M=Ni and/or Co) coatings with the good comprehensive property among anti-oxidation, anti-corrosion and mechanical properties have been widely used for the protection for the gas turbine components. However, after a long-term thermal exposure to high temperature atmosphere in service, the coatings are rapidly degraded. The main cause is ascribed to the intensive element interdiffusion between the coating and the substrate. To suppress the interdiffusion, addition of a diffusion barrier (DB) is required at the interface of the overlayer and the substrate. However, M-Cr-Al-Y coating system with a ceramic diffusion barrier prepared by a conventional two-step arc ion plating (AIP) on the superalloy substrate would reduce the interfacial adhesive strength. In this paper, the multilayer system of Ni-Cr-Al-Y-Si overlayer with a DB and a bond coat (BC) was deposited on the DSM11 substrate by one-step AIP. The anti--oxidation property, the anti-diffusion ability of the barrier and the interfacial adhesive strength of the multilayer system were investigated. The results indicate that the multilayer can provide more effective protection for the DSM11 substrate than the single coating at high temperature. After 100 h thermal exposure at 1050 ℃, the surface Al2O3 scales are continuous, dense, and only very little amounts of alloy elements diffused from the substrate is detected in the overlayer. After\linebreak 100 cyc cycles between 1050 ℃ and room temperature (RT), the barrier layer has still well adhesive to the overlayer and the substrate. The tensile adhesion test shows that the interfacial adhesive strength is 63.6 MPa for the annealed multilayer system, which is about 20 MPa higher than that of the coating system with a DB on the DSM11 substrate deposited by the two-step AIP. The one-step AIP method can increase the interfacial adhesive strength and improve the anti-oxidation performance of the multilayer with DB.

Key wordsdiffusion barrier (DB)    coating    anti-oxidation    interfacial adhesive strength    one-step deposition
收稿日期: 2009-07-08     
基金资助:

国家自然科学基金项目50571101和广西科学基金项目0731013资助

作者简介: 李伟洲, 男, 1975年生, 副教授, 博士

[1] Knotek O, Loffler F, Beele W. Surf Coat Technol, 1993; 61: 6
[2] Li S S, Song J X, Zhou C G, Gong S K, Han Y F. Intermetallics, 2005; 13: 309
[3] Sloof W G. Self Healing in Coating at High Temperatures: Self Healing Materials. Netherlands: Springer, 2007: 309
[4] Nicholls J R. MRS Bull, 2003; 28: 659
[5] Wang Q M,Wu Y N, Ji A L, Ke P L, Sun C, Huang R F, Wen L S. Acta Metall Sin, 2004; 40: 83
(王启民, 武颖娜, 纪爱玲, 柯培玲, 孙超, 黄荣芳, 闻立时. 金属学报, 2004; 40: 83)

[6] Li W Z, Yao Y, Wang Q M, Bao Z B, Gong J, Sun C, Jiang X. J Mater Res, 2008; 23: 341
[7] Li W Z, Yao Y, Li Y Q, Li J B, Gong J, Sun C, Jiang X. Mater Sci Eng, 2009; A512: 117
[8] Yao Y, Li W Z, Wang Q M, Gong J, Sun C, Li J B. Acta Metall Sin, 2008; 44: 876
(姚勇, 李伟洲, 王启民, 宫骏, 孙 超, 李家宝. 金属学报, 2008; 44: 876)

[9] Zhang K, Wang Q M, Sun C, Wang F H. Corros Sci, 2008; 50: 1707
[10] Sun C, Wang Q M, Tang Y J, Guan Q F, Gong J, Wen L S. Acta Metall Sin, 2005; 41: 1167
(孙超, 王启民, 唐永吉, 关庆丰, 宫 骏, 闻立时. 金属学报. 2005; 41: 1167)

[11] Ren X, Wang F H. Surf Coat Technol, 2006; 201: 30
[12] Yao Y. Master Dissertation. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
(姚勇. 中国科学院金属研究所硕士学位论文, 沈阳, 2008)
[13] Peng X, Wang F H, Clark D K. Acta Metall Sin, 2003; 39: 1055
(彭 晓, 王福会, Clarke D R. 金属学报. 2003; 39: 1055)
[14] Cremer R, Witthaut M, Reichert K, Schierling M, Neuschutz D. Surf Coat Technol, 1998; 108–109: 48
[15] Xie L, Sohn Y, Jordan E H, Gell M. Surf Coat Technol, 2003; 176: 57
[16] Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S. Prog Mater Sci, 2001; 46: 505

[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[4] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[5] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[6] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[7] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[8] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[9] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[10] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[11] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[12] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[13] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[14] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[15] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.