Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 117-128    DOI: 10.11900/0412.1961.2024.00152
  研究论文 本期目录 | 过刊浏览 |
Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响
万杰1, 李皓天1, 刘书基2, 路洪洲3, 王立生2, 张振栋2, 刘春海2, 贾建磊2, 刘海峰2, 陈豫增1()
1 西北工业大学 凝固技术国家重点实验室 西安 710072
2 中信戴卡股份有限公司 秦皇岛 066011
3 中信金属股份有限公司 北京 100004
Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy
WAN Jie1, LI Haotian1, LIU Shuji2, LU Hongzhou3, WANG Lisheng2, ZHANG Zhendong2, LIU Chunhai2, JIA Jianlei2, LIU Haifeng2, CHEN Yuzeng1()
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 China International Trust and Investment Corporation Dicastal Co. Ltd., Qinhuangdao 066011, China
3 China International Trust and Investment Corporation Metal Co. Ltd., Beijing 100004, China
引用本文:

万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
Jie WAN, Haotian LI, Shuji LIU, Hongzhou LU, Lisheng WANG, Zhendong ZHANG, Chunhai LIU, Jianlei JIA, Haifeng LIU, Yuzeng CHEN. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. Acta Metall Sin, 2025, 61(1): 117-128.

全文: PDF(4988 KB)   HTML
摘要: 

Al-Nb-B细化剂兼具优异的组织细化效果和良好的抗Si毒化性能,是铸造铝合金的理想细化剂。为改善传统熔炼法所制细化剂母合金中形核质点分布不均匀的问题,本工作通过熔融盐反应制备细化剂母合金,从而使细化剂中形核质点弥散分布。结果表明,与传统的熔炼法相比,熔融盐反应法不仅促进了形核质点的弥散分布,还降低了细化剂中形核质点的平均尺寸(10 μm→1 μm),进而提高细化剂对铝合金晶粒尺寸的细化效率(34%→79%)。在此基础上,对铸态熔融盐细化剂进行了热挤压/冷轧变形处理,进一步提高了形核质点分布的弥散性,其中热挤压态细化剂的细化效果更好,且抗衰退性能优异。最终,研究了热挤压态熔融盐细化剂对铸造铝合金ZL104和ZL114A微观组织及力学性能的影响。结果表明,该细化剂将ZL104和ZL114A合金的晶粒尺寸分别细化79.2%和78.5%,并显著降低了合金的铸造缺陷,提高了塑性和冲击韧性,具有较高的工程应用价值。

关键词 铸造铝合金细化剂熔融盐反应微观组织力学性能    
Abstract

Silicon (Si)-containing aluminum (Al) alloys are highly valued in the fabrication of large-scale components with thin walls and complex geometries, such as automobile engine housings, gas turbine blades, and electrical equipment housings. These alloys are favored owing to their high fluidity, excellent filling ability, low risk of hot cracking, and excellent weldability. However, the broad solidification range of these alloys can lead to the formation of coarse primary Al dendrites and casting defects such as shrinkage porosity. To improve casting quality, inoculation is commonly carried out in practice. Numerous inoculants, such as Al-Ti, Al-B, Al-Ti-B, Al-Ti-C, and Al-Ti-B-C, have so far been developed. Among these, Al-Ti-B is widely adopted in industry owing to its high grain refinement efficiency. However, its efficiency decreases significantly when the Si content in Al alloys exceeds 5% (mass fraction), a phenomenon known as “Si poisoning”. To this end, an Al-Nb-B inoculant was developed to replace Al-Ti-B. Al-Nb-B demonstrates excellent grain refinement effect and effective resistance to Si poisoning, making it ideal for cast Al alloys with high Si contents. Typically, Al-Nb-B is fabricated using conventional casting methods with Al-Nb and Al-B intermetallic alloys as feedstocks. However, because these feedstocks have higher melting points than Al alloys, the reaction time required for the fabrication of Al-Nb-B is lengthy. This leads to the coarsening and sedimentation of nuclei in the molten Al, resulting in a non-uniform distribution in the as-cast inoculant, limiting its industrial application. To overcome this challenge, a fabrication method utilizing molten salt reactions has been proposed to homogenize the distribution of nuclei in Al-Nb-B inoculants. This approach not only improves the homogeneity of the nuclei but also reduces their average particle size from 10 μm to 1 μm. This is attributed to the relatively fast reaction rate between the molten salt and the liquid Al. As a result, the grain refinement efficiency improved significantly from 34% to 79%. Furthermore, plastic deformation aids in further homogenizing nucleus distribution. Hot extrusion is more effective than cold-rolling in this regard, showing the best results for enhancing grain refinement and antidegradation performance of the molten salt-based inoculant. The performance of this newly developed molten salt-based inoculant was verified during the fabrication of cast Al alloys ZL104 and ZL114A, which not only refines grain size by 79.2% and 78.5%, respectively but also significantly reduces casting defects. Consequently, the ductility and impact toughness of both ZL104 and ZL114A alloys improved simultaneously. This study provides a new approach to fabricating high-performance Al-Nb-B inoculants for cast Al alloys.

Key wordscast Al alloy    inoculant    molten salt reaction    microstructure    mechanical property
收稿日期: 2024-05-09     
ZTFLH:  TG292  
基金资助:国家自然科学基金项目(52071262);国家自然科学基金项目(52301197);国家自然科学基金项目(52234009);中央高校基本科研业务费专项资金项目(D5000240144);陕西省秦创原科学家+工程师项目(2022KXJ-020);陕西省自然科学基础研究计划项目(2023-JC-QN-0421)
通讯作者: 陈豫增,yzchen@nwpu.edu.cn,主要从事先进金属材料及其液-固成形研究
Corresponding author: CHEN Yuzeng, professor, Tel: 13572260961, E-mail: yzchen@nwpu.edu.cn
作者简介: 万 杰,男,1992年生,博士
图1  熔炼细化剂浇铸示意图、铸态XRD谱和微观组织及其中间合金微观组织的OM像
图2  熔融盐细化剂的浇铸示意图、铸态XRD谱和微观组织
图3  传统熔炼法和熔融盐反应法制备细化剂的机理图
图4  铸态ZL104合金在添加熔炼和熔融盐细化剂前后微观组织的宏观照片和OM像
图5  不同状态熔融盐细化剂的SEM像
图6  ZL104熔体在经过不同状态熔融盐细化剂处理后静置不同时间铸态组织的OM像
图7  经过不同状态熔融盐细化剂处理后静置不同时间铸态ZL104熔体的平均晶粒尺寸
图8  铸态铝合金在热挤压态熔融盐细化剂添加前后微观组织的OM像
Material

σ0.2

MPa

σb

MPa

ε

%

Ak

J

Virgin ZL104 alloy2362731.90.82
Inoculated ZL104 alloy2402792.31.07
Virgin ZL114A alloy2453095.01.09
Inoculated ZL114A alloy2413105.41.48
表1  热处理态铸造铝合金在添加热挤压态熔融盐细化剂前后的拉伸及冲击性能
1 Guan R G, Lou H F, Huang H, et al. Development of aluminum alloy materials: Current status, trend, and prospects[J]. Strat. Study CAE, 2020, 22: 68
1 管仁国, 娄花芬, 黄 晖 等. 铝合金材料发展现状、趋势及展望[J]. 中国工程科学, 2020, 22: 68
doi: 10.15302/J-SSCAE-2020.05.013
2 Li Y, Li H X, Katgerman L, et al. Recent advances in hot tearing during casting of aluminium alloys[J]. Prog. Mater. Sci., 2021, 117: 100741
3 Yang J, Zhao Y, Yan K K, et al. Heat treatment of high pressure die cast AlSi7MgMn alloy[J]. Foundry Technol., 2022, 43: 506
3 杨 洁, 赵 越, 闫康康 等. 高压铸造AlSi7MgMn合金热处理工艺研究[J]. 铸造技术, 2022, 43: 506
4 Wan J, Geng H R, Chen B, et al. Assessing the thermal stability of laser powder bed fused AlSi10Mg by short-period thermal exposure[J]. Virtual Phys. Prototyp., 2023, 18: e2165122
5 Feng Z, Tan H, Fang Y B, et al. Selective laser melting of TiB2/AlSi10Mg composite: Processability, microstructure and fracture behavior[J]. J. Mater. Process. Technol., 2022, 299: 117386
6 Eborall M D. Grain refinement of aluminium and its alloys by small additions of other elements[J]. J. Inst. Met., 1949, 76: 295
7 Cibula A. The grain refinement of aluminium alloy castings by additions of titanium and boron[J]. J. Inst. Met., 1951, 80: 1
8 Han Y F, Zhang H L, Xu J, et al. Development of grain refining mechanism of Al alloys by Al-Ti-B master alloys[J]. Mater. China, 2018, 37: 632
8 韩延峰, 张瀚龙, 徐 钧 等. 基于Al-Ti-B细化剂的铝合金异质形核机制研究进展[J]. 中国材料进展, 2018, 37: 632
9 Li Y, Jiang Y, Liu B, et al. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system[J]. J. Mater. Sci. Technol., 2021, 65: 190
doi: 10.1016/j.jmst.2020.04.075
10 Qiu D, Taylor J A, Zhang M X, et al. A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys[J]. Acta Mater., 2007, 55: 1447
11 Li Y, Hu B, Liu B, et al. Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system[J]. Acta Mater., 2020, 187: 51
12 Nowak M, Bolzoni L, Babu N H. Grain refinement of Al-Si alloys by Nb-B inoculation. Part I: Concept development and effect on binary alloys[J]. Mater. Des., 2015, 66: 366
13 Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems[J]. J. Alloys Compd., 2009, 472: 133
14 Xu J, Li Y, Hu B, et al. Development of Al-Nb-B master alloy with high Nb/B ratio for grain refinement of hypoeutectic Al-Si cast alloys[J]. J. Mater. Sci., 2019, 54: 14561
doi: 10.1007/s10853-019-03915-9
15 Birol Y. Effect of the salt addition practice on the grain refining efficiency of Al-Ti-B master alloys[J]. J. Alloys Compd., 2006, 420: 207
16 Li D X, Yan X R, Fan Y, et al. An anti Si/Zr-poisoning strategy of Al grain refinement by the evolving effect of doped complex[J]. Acta Mater., 2023, 249: 118812
17 Zhu Z G, Hu Z H, Seet H L, et al. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications[J]. Int. J. Mach. Tools Manuf., 2023, 190: 104047
18 Birol Y. An improved practice to manufacture Al-Ti-B master alloys by reacting halide salts with molten aluminium[J]. J. Alloys Compd., 2006, 420: 71
19 Yamagata H, Kasprzak W, Aniolek M, et al. The effect of average cooling rates on the microstructure of the Al-20%Si high pressure die casting alloy used for monolithic cylinder blocks[J]. J. Mater. Process. Technol., 2008, 203: 333
20 Brandes E A, Brook G B. Smithells Metals Reference Book[M]. 7th Ed., Amsterdam: Elsevier, 2013: 14
21 Bolzoni L, Nowak M, Hari Babu N. Assessment of the influence of Al-2Nb-2B master alloy on the grain refinement and properties of LM6 (A413) alloy[J]. Mater. Sci. Eng., 2015, A628: 230
22 Venkateswarlu K, Chakraborty M, Murty B S. Influence of thermo-mechanical processing of Al-5Ti-1B master alloy on its grain refining efficiency[J]. Mater. Sci. Eng., 2004, A364: 75
23 Venkateswarlu K, Murty B S, Chakraborty M. Effect of hot rolling and heat treatment of Al-5Ti-1B master alloy on the grain refining efficiency of aluminium[J]. Mater. Sci. Eng., 2001, A301: 180
24 Schaffer P L, Dahle A K. Settling behaviour of different grain refiners in aluminium[J]. Mater. Sci. Eng., 2005, A413-414: 373
25 Schaffer P L, Arnberg L, Dahle A K. Segregation of particles and its influence on the morphology of the eutectic silicon phase in Al-7wt.% Si alloys[J]. Scr. Mater., 2006, 54: 677
26 Xu J, Li R X, Li Q. Effect of agglomeration on nucleation potency of inoculant particles in the Al-Nb-B master alloy: Modeling and experiments[J]. Metall. Mater. Trans., 2021, 52A: 1077
27 Si J M, Ren Z Y, Zhang G W. Effect of electric field solidification parameters on microstructure and properties of ZL114A alloy[J]. Foundry Technol., 2014, 35: 749
27 司金梅, 任智勇, 张国伟. 电场凝固参数对ZL114A铝合金组织与性能的影响[J]. 铸造技术, 2014, 35: 749
28 Tian S K, Jin Y P, Wang P, et al. Effect of aging treatment on mechanical properties and microstructure of low pressure cast ZL114A alloy[J]. Heat Treat. Met., 2024, 49(1): 179
28 田少鲲, 金圆平, 王 萍 等. 时效处理对低压铸造ZL114A合金力学性能及显微组织的影响[J]. 金属热处理, 2024, 49(1): 179
29 Chen Y S, Lu G, Yan Q S, et al. Mechanical properties and creep mechanism of yttrium and cerium modified ZL114A alloy via vacuum counter-pressure casting[J]. J. Mech. Eng., 2023, 59(18): 186
doi: 10.3901/JME.2023.18.186
29 陈义斯, 芦 刚, 严青松 等. 稀土钇、铈变质真空差压铸造ZL114A合金的力学性能及蠕变机制[J]. 机械工程学报, 2023, 59(18): 186
doi: 10.3901/JME.2023.18.186
30 Chai G C, BÄckerud L, RØlland T, et al. Dendrite coherency during equiaxed solidification in binary aluminum alloys[J]. Metall. Mater. Trans., 1995, 26A: 965
31 Goulart P R, Spinelli J E, Osório W R, et al. Mechanical properties as a function of microstructure and solidification thermal variables of Al-Si castings[J]. Mater. Sci. Eng., 2006, A421: 245
32 Elsebaie O, Samuel A M, Samuel F H. Effects of Sr-modification, iron-based intermetallics and aging treatment on the impact toughness of 356 Al-Si-Mg alloy[J]. J. Mater. Sci., 2011, 46: 3027
33 Bolzoni L, Nowak M, Hari Babu N. Grain refinement of Al-Si alloys by Nb-B inoculation. Part II: Application to commercial alloys[J]. Mater. Des., 2015, 66: 376
34 Li Y, Bai Q L, Liu J C, et al. The influences of grain size and morphology on the hot tearing susceptibility, contraction, and load behaviors of AA7050 alloy inoculated with Al-5Ti-1B master alloy[J]. Metall. Mater. Trans., 2016, 47A: 4024
35 Wan J, Yang J L, Zhou X Y, et al. Superior tensile properties of graphene/Al composites assisted by in-situ alumina nanoparticles[J]. Carbon, 2023, 204: 447
36 Wang B B, Xie G M, Wu L H, et al. Grain size effect on tensile deformation behaviors of pure aluminum[J]. Mater. Sci. Eng., 2021, A820: 141504
37 Basavakumar K G, Mukunda P G, Chakraborty M. Influence of grain refinement and modification on microstructure and mechanical properties of Al-7Si and Al-7Si-2.5Cu cast alloys[J]. Mater. Charact., 2008, 59: 283
[1] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[2] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[3] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[4] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[5] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[6] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[7] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[8] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[9] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[10] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[11] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[12] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[13] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[14] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[15] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.