Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1217-1223    DOI: 10.11900/0412.1961.2014.00312
  本期目录 | 过刊浏览 |
新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响
周德强, 刘雄军, 吴渊, 王辉, 吕昭平()
北京科技大学新金属材料国家重点实验室, 北京 100083
RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS
ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
引用本文:

周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
Deqiang ZHOU, Xiongjun LIU, Yuan WU, Hui WANG, Zhaoping LV. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. Acta Metall Sin, 2014, 50(10): 1217-1223.

全文: PDF(5366 KB)   HTML
摘要: 

通过观察新型奥氏体耐热不锈钢(AFA不锈钢)试样在不同条件下再结晶的金相组织, 研究了AFA不锈钢再结晶过程中的组织演变行为. 结果表明, 冷轧20%的AFA不锈钢试样在1473 K等温2 h以上才能完全再结晶; 完全再结晶的试样在1023 K, 应变速率为6.4×10-7 s-1条件下拉伸时, 稳态流变强度保持在130 MPa左右, 并且具有良好的塑性变形能力和明显的加工硬化效果. 但若不能完全再结晶, 在相同实验条件下试样具有较高的强度(150 MPa), 但是塑性变差. AFA不锈钢再结晶晶粒长大过程受到NbC相析出的影响, 其晶粒长大指数由理想晶粒长大的2变为3, 表观激活能为234.7 kJ/mol, 与Nb在奥氏体钢中沿晶界扩散的激活能吻合.

关键词 奥氏体耐热不锈钢晶粒长大晶界迁移NbC沉淀    
Abstract

Energy crisis and global warming demand development of high-performance structural materials to improve energy efficiency. For efficient energy conversion, the operating temperature and pressure of a heat engine used in boiler/steam turbine power plants should be as high as possible and materials used for the engine components must be able to withstand the high operating temperature. As such, next-generation structural materials simultaneously possessing higher creep strength and larger oxidation-resistance at elevated temperatures than those currently used are required. The conventional austenitic stainless steels, which rely on the formation of a tenacious Cr2O3 scale, would lose its protection capability at temperatures above 923 K, in particular in the presence of sulfur and water vapor. The alumina-forming austenitic (AFA) stainless steels are a relatively new class of dispersion-strengthened austenitic steels which showed superior oxidation-resistance to conventional stainless steels due to formation of the Al2O3-based protective scale at high temperatures. Recently, research focuses in this field have been mainly placed on high temperature oxidation-resistance, while little attention was paid to the mechanical property of these steels, particularly at elevated temperatures. In order to fully understand the deformation mechanisms at high temperatures, the recrystallization behavior in a typical AFA stainless steel under different conditions, including different annealing temperatures and durations, were investigated. The high-temperature mechanical properties of the AFA stainless steel samples heat-treated under different conditions were also studied. The sample was fully recrystallized upon heat treatment at 1473 K for at least 2 h and showed tensile strength about 130 MPa when tested at 1023 K with a strain rate 6.4×10-7 s-1. The specimen was partially recrystallized upon heat treatment at 1373 K for 0.5 h and exhibited a higher tensile strength of 150 MPa with decreased plasticity when tested under the same condition. Further investigation shows that the grain growth was influenced by the precipitation of NbC. The grain growth exponent, n, was determined to be 3 and the apparent activation energy for grain growth is 234.7 kJ/mol, which is consistent with that of the Nb diffusion along the grain boundary in the austenite.

Key wordsalumina-forming austenitic stainless steel    grain growth    grain boundary migration    NbC precipitation
收稿日期: 2014-06-17     
ZTFLH:  TG142.1  
基金资助:* 国家自然科学基金项目51010001和51001009资助
作者简介: null

周德强, 男, 1987年生, 博士生

图1  新型奥氏体耐热不锈钢(AFA不锈钢)冷轧20%后的OM像
图2  AFA不锈钢在1373 K再结晶不同时间的OM像
图3  AFA不锈钢在1423 K再结晶不同时间的OM像
图4  AFA不锈钢在1473 K再结晶不同时间的OM像
图5  AFA不锈钢铸态、冷轧态、1373 K再结晶0.5 h和1473 K再结晶2 h的XRD谱
图6  AFA不锈钢1373 K再结晶0.5 h后的TEM像
Temperature / K Time / h Grain size / mm
1373 0.5 13.3
1 60.9
2 67.0
4 91.3
1423 0.5 59.7
1 85.2
2 98.3
1473 0.5 75.2
1 101.2
2 118.8
表1  AFA不锈钢在1373, 1423和1473 K再结晶处理不同时间后的再结晶晶粒尺寸
图7  AFA不锈钢在不同条件下再结晶后的高温力学性能
图8  AFA不锈钢晶粒尺寸与再结晶时间的函数关系
图9  晶粒长大动力学常数C与热力学温度(1/T)的函数关系
[1] Viswanathan R, Bakker W J. J Mater Eng Perf, 2001; 10: 81
[2] Maziasz P J, Swindeman R W, Shingledcker J P, More K L, Pint B A, Curzio E L. In: Strang A, Conroy R D, Banks W M, Blackler M, Leggett J, McColvin G M eds., Proc Sixth International Charles Parsons Turbine Conference, London: Maney, 2003: 1057
[3] Pint B A, Peraldi R, Maziasz P J. Mater Sci Forum, 2004; 461-464: 815
[4] Yamamoto Y, Brady M P, Lu Z P, Maziasz P J, Liu C T, Pint B A, More K L, Meyer H M, Payzant E A. Science, 2007; 316: 433
[5] Brady M P, Yamamoto Y, Santella M L, Walker L R. Oxid Met, 2009; 72: 311
[6] Yamamoto Y, Takeyama A, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P. Intermetallics, 2008; 16: 453
[7] Yamamoto Y, Brady M P, Santella M L, Bei H, Maziasz P J, Pint B A. Metall Mater Trans, 2011; 42A: 922
[8] Bei H, Yamamoto Y, Brady M P, Santella M L. Mater Sci Eng, 2010; A527: 2079
[9] Pint B A, Haynes J A, Besmann T M. Surf Coat Technol, 2010; 204: 3287
[10] Brady M P, Yamamoto Y, Santella M L, Pint B A. Scr Mater, 2007; 57: 1117
[11] Xu X Q, Zhang X F, Chen G L, Lu Z P. Mater Lett, 2011; 65: 3285
[12] Xu X Q, Zhang X F, Sun X Y, Lu Z P. Corros Sci, 2012; 65: 317
[13] Xu X Q, Zhang X F, Sun X Y, Lu Z P. Oxid Met, 2012; 78: 349
[14] Wu T Y, Wu Q B, Riquier Y. Acta Metall Sin, 1993; 29: 79
[14] (吴惕言, 吴启白, Riquier Y. 金属学报, 1993; 29: 79)
[15] Chen L, Wang L M, Du X J, Chen X. Acta Metall Sin, 2010; 46: 52
[15] (陈 雷, 王龙妹, 杜晓健, 陈 晓. 金属学报, 2010; 46: 52)
[16] Zhou D Q, Xu X Q, Mao H H, Yan Y F, Nieh T G, Lu Z P. Mater Sci Eng, 2014; A594: 246
[17] Fernández A I, López B, Rodriguez-Ibabe J M. Metall Mater Trans, 2002; 33A: 3089
[18] Han K H. Mater Sci Eng, 2000; A279: 1
[19] Burke J E. Trans Metall Soc AIME, 1949; 180: 73
[20] Beck P A, Kremer J C, Pemer L H, Holzworth M L. Trans Metall Soc AIME, 1948; 175: 372
[21] Atkinson H V. Acta Metall, 1988; 36: 469
[22] Liu W H, Wu Y, He J Y, Nieh T G, Lu Z P. Scr Mater, 2013; 68: 526
[23] Burke J E, Turnbull D. Prog Met Phys, 1952; 3: 220
[24] Liu W J. Metall Mater Trans, 1995; 26A: 1641
[25] Dutta B, Sellars C M. Mater Sci Technol, 1987; 3: 197
[26] Dutta B, Valdes E, Sellars C M. Acta Metall Mater, 1992; 40: 653
[27] Yamamoto S, Ouchi C, Osuka T. In: Wray P J, DeArdo A J eds., Thermomechanical Processing of Microalloyed Austenite. Warrendale: AIME, 1982: 613
[1] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[2] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[3] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[4] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[5] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[6] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[7] 周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
[8] 曹宇 邸洪双 张洁岑 张敬奇 马天军. 800H合金动态再结晶行为研究[J]. 金属学报, 2012, 48(10): 1175-1185.
[9] 付立铭 单爱党 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837.
[10] 韩利战 陈睿恺 顾剑锋 潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究[J]. 金属学报, 2009, 45(12): 1446-1450.
[11] 岳景朝 王浩 刘国权 栾军华. 一个基于平均N面体模型的晶粒长大速率方程[J]. 金属学报, 2009, 45(12): 1421-1424.
[12] 高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.
[13] 陈礼清 隋凤利 刘相华. Inconel 718合金方坯粗轧加热过程晶粒长大模型[J]. 金属学报, 2009, 45(10): 1242-1248.
[14] 王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .
[15] 韩清超; 宋晓艳; 李凌梅; 刘雪梅 . 基于热力学函数的纳米晶粒长大Cellular Automaton仿真研究[J]. 金属学报, 2008, 44(4): 495-500 .