Please wait a minute...
金属学报  2010, Vol. 46 Issue (7): 832-837    DOI: 10.3724/SP.J.1037.2010.00110
  论文 本期目录 | 过刊浏览 |
低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响
付立铭, 单爱党, 王巍
1) 上海交通大学材料科学与工程学院, 上海 200240
2) 宝山钢铁股份有限公司研究院, 上海 201900
EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL
FU Liming, SHAN Aidang, WANG Wei
1) School of Material Science and Engineering, Shanghai Jiaotong University, Shanghai 200240
2) Research Institute, Baoshan Iron $\&$ Steel Co., Ltd., Shanghai 201900
引用本文:

付立铭 单爱党 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837.
, , . EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL[J]. Acta Metall Sin, 2010, 46(7): 832-837.

全文: PDF(896 KB)  
摘要: 

通过理论计算并结合实验研究了低碳Nb微合金钢中NbC析出相与Nb固溶原子共同作用对再结晶后奥氏体晶粒长大的影响. 结果表明, Nb的溶质原子拖曳与NbC析出相钉扎共同作用阻碍晶粒长大晶界的迁移, 高温时NbC析出相的钉扎起主要作用, Nb的溶质拖曳效应并不明显, 而相对低温时Nb拖曳对晶粒长大产生明显地抑制作用, 理论计算与实验结果吻合良好; 溶质原子拖曳和析出相的钉扎对抑制晶粒长大的效力可以用p因子来表征, 当p=0时, 以NbC析出的Nb与固溶Nb的量之比达到最优, 抑制晶粒长大效果最好, 当p>0时, 析出相的钉扎能更有效地阻碍晶粒长大, 而p<0时, 溶质原子的拖曳对抑制晶粒的长大更有效; 在常规热轧温度区间或者奥氏体化温度区间内, 只有尺寸不大于10 nm的细小的NbC析出相对再结晶后的晶粒长大才能起到较好抑制作用.

关键词 晶粒长大析出相钉扎溶质拖曳低碳Nb微合金钢    
Abstract

A kinetic equation for austenite grain growth has been derived concerning the mutual effect of NbC and Nb solute in low carbon Nb-microalloyed steels. It is shown that both solute drag of Nb in solid solution and pinning of NbC particles inhibit the grain boundary migration during grain growth after recrystallization in low carbon Nb-microalloyed steels. At high temperatures the NbC pinning plays a dominate role for retarding the austenite grain growth with less Nb solute drag effect. An obvious Nb solute drag restraint was, however, observed at relatively low temperatures. Also, the theoretical calculations are in good agreement with experimental results. The effectiveness of drag effect of soluble atoms and pinning effect of precipitates can be characterized by a p factor. The pinning of precipitates and solute drag of soluble atoms are more effective for suppressing grain growth as p>0 and p<0, respectively. And the ratio of Nb in solute and Nb in precipitate as p=0 reaches the priority and most effectively retards the grain growth. In the traditional hot rolling or< austenitizing temperature range, a strong suppression for grain growth after recrystallization could be obtained due to those fine NbC particles smaller than 10 nm in Nb-microalloyed steels.

Key wordsgrain growth    precipitates pinning    solute drag    low carbon Nb-microalloyed steel
收稿日期: 2010-03-04     
作者简介: 付立铭, 男, 1977年生, 博士

[1] Zener C. Trans AIME, 1948; 175: 47
[2] Smith C S. Trans AIME, 1948; 175: 15
[3] Cahn J W. Acta Metall, 1962; 10: 789
[4] Wang H R, Wang W. Mater Sci Technol, 2007; 23: 1305
[5] Zurob H S. PhD Thesis, McMaster University, Hamilton, 2003
[6] Sinclair C W, Huchinson C R, Brechet Y. Metall Trans, 2007; 38A: 821
[7] Qiao G Y, Xiao F R, Zhang X B, Cao Y B, Liao B. Trans Nonferrous Met Soc China, 2009; 19: 1395
[8] Wang X L, Wei Y H, Wang W, Hou L F. Acta Metall Sin (Engl Lett), 2008; 21: 8
[9] Zurob H S, Brechet Y, Purdy G. Acta Mater, 2001; 49: 4183
[10] Zhang Z H, Liu Y N, Liang X K, She Y. Mater Sci Eng, 2008; A474: 254
[11] Zaky Farahat A I. J Mater Proc Technol, 2008; 204: 365
[12] Bai D Q, Yue S, Sun W P, Jonas J J. Metall Mater Trans, 1993; 24A: 2151
[13] Maruyama N, Uemori R, Sugiyama M. Mater Sci Eng, 1998; A250: 2
[14] Beck P A, Kremer J C, Demer L J. Trans AIME, 1948; 175: 372
[15] Hillert M. Acta Metall, 1965; 13: 227
[16] Turnbull D. Trans AIME, 1951; 191: 661
[17] Mazzi N, Rouag N. Model Simul Mater Sci Eng, 2001; 9: 423
[18] Hansen S S, Vandersande J B, Cohen M. Metall Trans, 1980; 11A: 387
[19] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press, 1996: 11
[20] Ashby M F, Harper J, Lewis J. Trans Metall Soc AIME, 1969; 245: 413
[21] Doherty R D. Met Sci, 1982; 16: 1
[22] Gladman T. The Physical Metallurgy of Microallyed Steel. London: Institute of Metals, 1997: 1
[23] Zhang P J, Fu L M, Wang W. Iron Steel Suppl, 2005; 40: 666
[24] Maruyama N, Smith G DW. Mater Sci Forum, 2004; 467– 470: 949
[25] Mclean D. Grain Boundaries in Metals. Oxford: Clarendon, 1957: 116
[26] Wang W, Wang H R. Mater Lett, 2007; 61: 2227
[27] Dutta B, Palmiere E J, Sellars C M. Acta Mater, 2001; 49: 785
[28] Frost H J, Ashby M F. Deformation–Mechanism Maps. Oxford: Pergamon Press, 1982: 21
[29] Enomoto M, Aaronson H I. Metall Trans, 1986; 17A: 1381
[30] Gamsjager E, Svoboda J, Fischer F D. Comput Mater Sci, 2005; 32: 360
[31] James D W, Leak G M. Philos Mag, 1965; 12: 491
[32] Geise J, Herzig C. Z Metallkd, 1985; 76: 622
[33] Jones A R, Ralph B. Acta Metall, 1975; 23: 355
[34] Jonas J J, AkbenM G. Mater Forum, 1981; 4: 92
[35] Dutta B, Sellars C M. Mater Sci Technol, 1987; 3: 97

[1] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[3] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[4] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[5] 聂文金 尚成嘉 吴圣杰 施培建 程俊杰 张晓兵. Nb对奥氏体热变形后等温回复的影响[J]. 金属学报, 2012, 48(7): 775-781.
[6] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[7] 周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
[8] 韩利战 陈睿恺 顾剑锋 潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究[J]. 金属学报, 2009, 45(12): 1446-1450.
[9] 岳景朝 王浩 刘国权 栾军华. 一个基于平均N面体模型的晶粒长大速率方程[J]. 金属学报, 2009, 45(12): 1421-1424.
[10] 高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.
[11] 陈礼清 隋凤利 刘相华. Inconel 718合金方坯粗轧加热过程晶粒长大模型[J]. 金属学报, 2009, 45(10): 1242-1248.
[12] 王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .
[13] 韩清超; 宋晓艳; 李凌梅; 刘雪梅 . 基于热力学函数的纳米晶粒长大Cellular Automaton仿真研究[J]. 金属学报, 2008, 44(4): 495-500 .
[14] 王浩; 刘国权 . 凸形多面体个体晶粒的三维von Neumann准确方程[J]. 金属学报, 2008, 44(11): 1332-1334 .
[15] 王浩; 刘国权; 秦湘阁 . 三维晶粒长大速率方程的大尺度Potts模型Monte Carlo仿真验证[J]. 金属学报, 2008, 44(1): 13-18 .