Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1858-1872    DOI: 10.11900/0412.1961.2024.00145
  研究论文 本期目录 | 过刊浏览 |
形变球化对珠光体钢在模拟货油舱内底板环境中腐蚀行为和力学性能的影响
郭佳明1,2, 陈楠2, 何小燕2, 魏洁2(), 陈慧琴1(), 董俊华2(), 柯伟2
1 太原科技大学 材料科学与工程学院 太原 030024
2 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Effect of Deformation Spheroidization Treatment on the Corrosion Behavior and Mechanical Properties of Pearlite Steel in Simulated Cargo Oil Tank Inner Substrate Environment
GUO Jiaming1,2, CHEN Nan2, HE Xiaoyan2, WEI Jie2(), CHEN Huiqin1(), DONG Junhua2(), KE Wei2
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

郭佳明, 陈楠, 何小燕, 魏洁, 陈慧琴, 董俊华, 柯伟. 形变球化对珠光体钢在模拟货油舱内底板环境中腐蚀行为和力学性能的影响[J]. 金属学报, 2025, 61(12): 1858-1872.
Jiaming GUO, Nan CHEN, Xiaoyan HE, Jie WEI, Huiqin CHEN, Junhua DONG, Wei KE. Effect of Deformation Spheroidization Treatment on the Corrosion Behavior and Mechanical Properties of Pearlite Steel in Simulated Cargo Oil Tank Inner Substrate Environment[J]. Acta Metall Sin, 2025, 61(12): 1858-1872.

全文: PDF(6938 KB)   HTML
摘要: 

针对货油舱用船板钢(T8钢)的微电偶腐蚀加速问题,本工作在不添加合金元素的基础上采用形变球化工艺调控微观组织以改善其综合性能。通过调整锻造和热处理工艺参数获得了回火索氏体的预期组织,采用SEM和EBSD对比了工艺优化前后的微观组织特征,并通过显微硬度、拉伸实验和断口形貌分析等揭示了显微组织对力学性能的影响机制,同时采用失重实验、电化学测试和产物物相分析与形貌表征等方法对优化前后T8钢的腐蚀机制进行了分析。结果表明,采用形变球化工艺获得的回火索氏体组织通过细晶强化、位错强化和弥散强化机制,实现了T8钢强度和塑韧性的综合优化。通过组织调控来改变渗碳体析出相的形貌和尺寸,将大片层状渗碳体转变为细颗粒状渗碳体,抑制了腐蚀过程中渗碳体阴极相在表面的持续累积,有效减弱了微电偶腐蚀加速作用,显著提高了T8钢在模拟货油舱底板环境中的耐腐蚀性能。

关键词 形变球化珠光体钢细晶强化微电偶腐蚀力学性能耐腐蚀性能    
Abstract

With the rapid growth of the international crude oil shipping industry, ensuring the safety of oil tanker transportation has become a critical concern. The cargo oil tank (COT), the primary structure for storing crude oil, is particularly susceptible to corrosion, with the inner bottom plate being a key site for failure and potential oil leakage. Low-alloy corrosion-resistant steel, mandated by the International Maritime Organization as an alternative to traditional anticorrosion coatings, faces challenges in China due to insufficient corrosion resistance, limiting its long-term applicability in COTs. Enhancing the intrinsic properties of ship plate steel while minimizing costs is therefore crucial for improving its corrosion resistance and mechanical performance. In the simulated acidic Cl- environment of a COT bottom plate, a micro-galvanic couple forms between ferrite and cementite in pearlite, with ferrite acting as the anodic phase and cementite as the cathodic phase. Over time, accumulated cementite thickens on the surface, increasing the anode/cathode area ratio and accelerating the corrosion rate due to intensified micro-galvanic effects. To mitigate this, a deformation spheroidization process was employed to refine the microstructure without additional alloying elements. By optimizing forging and heat treatment parameters, a tempered sorbitic microstructure was achieved in T8 steel. Microstructural evolution was characterized using SEM and EBSD, while mechanical properties were assessed through microhardness testing, tensile experiments, and fracture morphology analysis. Corrosion behavior before and after optimization was examined via mass loss tests, electrochemical analysis, and corrosion product characterization. The results indicate that spheroidization heat treatment enhances the strength, plasticity, and toughness of T8 steel through grain refinement, dislocation strengthening, and dispersion strengthening. The transformation of bulk layered cementite into fine-grained cementite effectively suppresses its accumulation on the surface during corrosion, mitigating the accelerating effect of micro-galvanic corrosion. Consequently, the corrosion resistance of T8 steel in the simulated COT environment was significantly improved. This study demonstrates a cost-effective approach to enhancing both the mechanical properties and corrosion resistance of ship plate steel through microstructural control, offering new insights for the development of corrosion-resistant materials for cargo oil tanks.

Key wordsdeformation spheroidization    pearlite steel    fine grain strengthening    micro-galvanic corrosion    mechanical property    corrosion resistance
收稿日期: 2024-05-08     
ZTFLH:  TG174.2  
基金资助:国家自然科学基金项目(52373232)
通讯作者: 魏洁,jwei@imr.ac.cn,主要从事混凝土结构中钢筋的腐蚀与防护研究; 陈慧琴,chenhuiqin@tyust.edu.cn,主要从事高端装备构件先进材料成型理论与技术研究; 董俊华,jhdong@imr.ac.cn,主要从事耐蚀材料的电化学设计及腐蚀监检测研究
Corresponding author: WEI Jie, associate professor, Tel: 13478204310, E-mail: jwei@imr.ac.cn; CHEN Huiqin, professor, Tel: 18703417081, E-mail: chenhuiqin@tyust.edu.cn; DONG Junhua, professor, Tel: 13842056525, E-mail: jhdong@imr.ac.cn
作者简介: 郭佳明,男,1994年生,硕士
图1  形变球化工艺示意图
Sample numberCooling method after forgingCooling method after spheroidization
T1#Water coolingWater cooling
T2#Air cooling
T3#Air coolingWater cooling
T4#Air cooling
表1  形变球化样品编号
图2  拉伸试样尺寸图
图3  T8钢原始组织及其锻后水冷和空冷的显微组织的OM像
图4  T8钢原始组织及形变球化后不同冷却条件下显微组织的SEM像
图5  T8钢和T1#钢的EBSD分析
SteelfLAGBfHAGBd
%%μm
T812.387.734.18
T1#5.994.12.74
表2  T8钢和T1#钢的大、小角度晶界比例及平均晶粒尺寸
图6  T8钢和T1#钢的工程应力-应变曲线

Steel

Ultimate tensile strength

MPa

Yield strength

MPa

Elongation

%

T8977 ± 2-1 ± 2
T1#838 ± 4653 ± 421 ± 2
表3  T8钢和T1#钢的力学性能
图7  T8钢和T1#钢的宏观拉伸形貌及断口形貌的SEM像
图8  T8钢和T1#钢浸泡216 h后除锈前后的宏观腐蚀表面形貌
图9  T8钢和T1#钢在模拟溶液中浸泡216 h前后的XRD谱
图10  T8钢浸泡120和216 h后除锈前后表面腐蚀形貌的SEM像
图11  T1#钢浸泡120和216 h后除锈前后表面腐蚀形貌的SEM像
图12  T8钢和T1#钢浸泡120和216 h后腐蚀截面形貌的SEM像
图13  T8钢和T1#钢在模拟溶液中的年腐蚀速率随浸泡时间的变化
图14  T8钢和T1#钢浸泡不同时间后的动电位极化曲线
图15  T8钢和T1#钢的腐蚀电流密度随时间的变化
图16  T8钢和T1#钢浸泡不同时间后的电化学阻抗谱(EIS)
图17  EIS拟合的T8钢和T1#钢的等效电路

t

h

L

10-7 Ω·m2

Rs

Ω·cm2

Qc-Y0 × 103

Ω-1·cm-2·S-nc

nc

Rc

Ω·cm2

Qa-Y0 × 103

Ω-1·cm-2·S-na

na

Ra

Ω·cm2

χ2
243.8621.6403.1350.396810.222.3430.803012.371.823 × 10-3
481.9661.8962.2270.93836.555.1250.53678.621.416 × 10-4
723.1501.9951.9440.99674.527.1030.46955.891.886 × 10-4
1202.9751.9221.6050.75633.508.6120.50074.592.380 × 10-4
表4  T8钢浸泡不同时间后的拟合参数
图18  浸泡不同时间后T8钢和T1#钢的阴极反应电阻(Rc)和阳极反应电阻(Ra)

t

h

L

10-7 Ω·m2

Rs

Ω·cm2

Qc-Y0 × 103

Ω-1·cm-2·S-nc

nc

Rc

Ω·cm2

Qa-Y0 × 103

Ω-1·cm-2·S-na

na

Ra

Ω·cm2

χ2
243.3091.8102.8380.651511.962.4100.486012.668.610 × 10-4
483.5121.7954.6190.710610.105.6780.389611.401.050 × 10-3
723.3031.7762.2810.86699.202.4760.564410.342.406 × 10-4
1204.6541.8233.7500.78687.531.9070.89527.374.262 × 10-4
表5  T1#钢浸泡不同时间后的拟合参数
图19  T8钢和T1#钢的腐蚀机理示意图
[1] Yi M S, Seo K C, Park J S. Study on the root causes and prevention of coating cracks in the cargo hold of a product carrier [J]. Metals, 2022, 12: 1688
[2] Sun F L, Cheng X Q, Li X G. Corrosion property of a new repair-free steel developed for bottom plate of cargo oil tanks [J]. Adv. Mater. Res., 2013, 690-693: 206
[3] Woloszyk K, Goerlandt F, Montewka J. A methodology for ultimate strength assessment of ship hull girder accounting for enhanced corrosion degradation modelling [J]. Mar. Struct., 2024, 93: 103530
[4] Yang J W, Han C L, Xu J, et al. Development of corrosion resistant steel for cargo oil tanks of crude oil tankers [J]. Corros. Sci. Prot. Technol., 2013, 25: 411
[4] 杨建炜, 韩承良, 许 静 等. 原油油船货油舱耐腐蚀钢的开发 [J]. 腐蚀科学与防护技术, 2013, 25: 411
[5] Su H, Luo X B, Yang C F, et al. Effects of Cu on corrosion resistance of low alloyed steels in acid chloride media [J]. J. Iron Steel Res. Int., 2014, 21: 619
[6] Zhao Q H, Liu W, Zhao J, et al. Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2-O2-H2S-SO2 wet-dry corrosion environment of cargo oil tankers [J]. Int. J. Min. Met. Mater., 2015, 22: 829
[7] Xu X Y, Tian L, Zhou Y, et al. Effect of Nb on corrosion behavior of inner bottom plate of cargo oil tankers [J]. J. Iron Steel Res. Int., 2019, 26: 611
[8] Ahmadi F, Ranji A R. Reliability assessment of ship hull girders considering pitting corrosion and crack [J]. Eng. Res. Express, 2024, 6: 015503
[9] Li H L, Chai F, Yang C F, et al. Corrosion behavior of low alloy steel for cargo oil tank under upper deck conditions [J]. J. Iron Steel Res. Int., 2018, 25: 120
[10] Zhou D. Effect of pH and NaCl concentration on corrosion behavior of steels for the inner bottom plate of cargo oil tank [D]. Ma'anshan: Anhui University of Technology, 2017
[10] 周 鼎. pH值和NaCl浓度对货油舱内底板用钢腐蚀行为的影响 [D]. 马鞍山: 安徽工业大学, 2017
[11] Moslehyani A, Mobaraki M, Isloor A M, et al. Photoreactor-ultrafiltration hybrid system for oily bilge water photooxidation and separation from oil tanker [J]. React. Funct. Polym., 2016, 101: 28
[12] Guo L, Chen W L, Huang Q L, et al. An investigation into the factors and mechanisms underlying corrosion failure of B10 copper tubes in shipboard pipelines [J]. J. Phys.: Conf. Ser., 2023, 2639: 012049
[13] Wu H B, Liang J M, Tang D, et al. Influence of inclusion on corrosion behavior of E36 grade low-alloy steel in cargo oil tank bottom plate environment [J]. J. Iron Steel Res. Int., 2014, 21: 1016
[14] Hao X H, Dong J H, Mu X, et al. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank [J]. J. Mater. Sci. Technol., 2019, 35: 799
[15] Wei J, Zhou Y T, Dong J H, et al. Effect of cementite spheroidization on improving corrosion resistance of pearlitic steel under simulated bottom plate environment of cargo oil tank [J]. Acta Mater., 2019, 6: 100316
[16] Liu H, Wei J, Dong J H, et al. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61: 234
[17] ASTM. Standard test methods for tension testing of metallic materials [S]. West Conshohocken: ASTM International, 2008
[18] ISO. 8407:2009 Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens [S]. Switzerland: ISO, 2009
[19] Hao X H, Zhao X C, Chen H, et al. Comparative study on corrosion behaviors of ferrite-pearlite steel with dual-phase steel in the simulated bottom plate environment of cargo oil tanks [J]. J. Mater. Res. Technol., 2021, 12: 399
[20] Yuan Y, Wang J J, Wei J, et al. Cu alloying enables superior strength-ductility combination and high corrosion resistance of FeMnCoCr high entropy alloy [J]. J. Alloys Compd., 2024, 970: 172543
[21] Xue F, Wei X, Dong J H, et al. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35: 596
[22] Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
[23] Lu H R, Shi H Y, Zhang H, et al. Enhanced yield strength by fine grain strengthening and TRIP/TWIP effect of metastable β-type Ti-4V-2Mo-2Fe alloy with high ductility [J]. Mater. Charact., 2024, 207: 113591
[24] Liu W J, Zhang C J, Guo P K, et al. Achieving enhanced mechanical properties in the Mg-Y-Zn-V alloy by refining grains and improving the morphology and distribution of LPSO via pre-forging and subsequent rolling [J]. J. Mater. Res. Technol., 2024, 29: 2493
[25] Ma C H, Ma X L, Pei X, et al. Effect of rolling reduction on the microstructure and mechanical properties of hot-rolled Mg-Li-Al-Ca alloys [J]. Mater. Today Commun., 2023, 37: 107469
[26] Kishore K, Sarkar K, Arora K S. Effect of alloying elements on microstructure, wear, and corrosion behavior of Fe-based hardfacing [J]. Weld. World, 2023, 67: 2463
[27] Cao C N. Principles of Electrochemistry of Corrosion [M]. 2nd Ed., Beijing: Chemical Industry Press, 2004: 34
[27] 曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004: 34
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[5] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[6] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[7] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能[J]. 金属学报, 2025, 61(7): 1071-1081.
[8] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[9] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[10] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[11] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[12] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[13] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[14] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[15] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.