Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1873-1883    DOI: 10.11900/0412.1961.2024.00069
  研究论文 本期目录 | 过刊浏览 |
晶粒尺寸对Fe-Mn-Al-C系第三代TWIP钢低周疲劳性能的影响
韩婧1,2, 邵琛玮1,2(), 邱子浩1,2, 张振军1,2, 张哲峰1,2()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of Grain Size on Low-Cycle Fatigue Properties of an Fe-Mn-Al-C Third Generation TWIP Steel
HAN Jing1,2, SHAO Chenwei1,2(), QIU Zihao1,2, ZHANG Zhenjun1,2, ZHANG Zhefeng1,2()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

韩婧, 邵琛玮, 邱子浩, 张振军, 张哲峰. 晶粒尺寸对Fe-Mn-Al-C系第三代TWIP钢低周疲劳性能的影响[J]. 金属学报, 2025, 61(12): 1873-1883.
Jing HAN, Chenwei SHAO, Zihao QIU, Zhenjun ZHANG, Zhefeng ZHANG. Effect of Grain Size on Low-Cycle Fatigue Properties of an Fe-Mn-Al-C Third Generation TWIP Steel[J]. Acta Metall Sin, 2025, 61(12): 1873-1883.

全文: PDF(4364 KB)   HTML
摘要: 

为了深入探究高强钢的疲劳性能,本工作研究了合金成分为Fe-22Mn-3Al-0.6C的第三代孪晶诱导塑性(TWIP)钢的低周疲劳行为,重点分析了晶粒尺寸对循环应力响应、损伤机制和疲劳寿命的影响。综合考虑应变、应力对疲劳损伤的贡献,本工作从能量的角度评价TWIP钢的低周疲劳性能。结果表明,在低总应变幅(Δε / 2 = 0.3%)下,小尺寸晶粒(8 μm) TWIP钢表现出更好的低周疲劳性能;而在高总应变幅(Δε / 2 = 1.0%)下,大尺寸晶粒(60 μm) TWIP钢表现出更好的低周疲劳性能。通过滞回能模型分析,发现在较高总应变幅下,材料的疲劳机制由应变损伤主导,粗晶材料具有更好的容纳损伤缺陷的能力;而在较低总应变幅下,材料的疲劳机制由应力损伤主导,细晶材料强度更高,具有更优异的抵抗裂纹萌生能力。

关键词 TWIP钢低周疲劳疲劳寿命晶粒尺寸位错孪生    
Abstract

Lightweighting for bodies in white has become an important approach for enhancing energy efficiency and reducing emissions within the automotive industry. Among various lightweight materials, high-strength steel has shown considerable potential in terms of cost-effectiveness, safety, and user satisfaction. In particular, Fe-Mn-Al-C twinning-induced plasticity (TWIP) steel, also known as the third generation TWIP steel, has received considerable attention from the automotive industry in recent years owing to its excellent mechanical properties and good formability. During deformation, TWIP steel generates a considerable amount of deformation twinning within its grains, thereby impeding dislocation motion and resulting in high strain hardening rates in TWIP steels. Given that TWIP steels may be subjected to cyclic loading during actual service, the potential for fatigue failure poses a substantial risk during their long-term service, resulting in serious economic losses or human casualties. However, the deformation behavior and microstructure evolution of Fe-Mn-Al-C TWIP steel during low-cycle fatigue remain extensively understudied. Therefore, the study of the fatigue properties of TWIP steels is of considerable importance for their design and application in the automotive industry, warranting increasing attention. Herein, the low-cycle fatigue behaviors of Fe-22Mn-3Al-0.6C steels with different grain sizes were investigated. Steels with grain sizes of 8, 16, and 60 μm were prepared via hot rolling and subsequent heat treatment. After low-cycle fatigue testing, the samples were characterized using SEM equipped with electron channeling contrast imaging components and TEM. The effects of grain size on cyclic stress response, damage mechanisms, and fatigue life of Fe-Mn-Al-C TWIP steel were analyzed. Considering the fatigue damage contributed by strain and stress, the low-cycle fatigue property of TWIP steel was assessed from the perspective of hysteresis energy. Results indicated that the TWIP steel with small grain size (8 μm) exhibited enhanced low-cycle fatigue performance at a small total strain amplitude (Δε / 2 = 0.3%). Conversely, at a large total strain amplitude (Δε / 2 = 1.0%), the TWIP steel with large grain size (60 μm) exhibited enhanced low-cycle fatigue performance. Hysteretic energy model analysis revealed that fatigue damage mechanisms in TWIP steels were dominated by strain damage at large total strain amplitudes, with coarse grains showcasing an improved capacity to accommodate damaged defects. Conversely, at reduced total strain amplitudes, the fatigue mechanism was dominated by stress damage, with fine-grained steels showing enhanced strength and improved resistance against fatigue crack initiation.

Key wordsTWIP steel    low-cycle fatigue    fatigue life    grain size    dislocation    twinning
收稿日期: 2024-03-16     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52321001);国家自然科学基金项目(52130002);国家自然科学基金项目(51801216);国家自然科学基金项目(51975552);中国科协青年人才托举工程项目(YESS2020-0120);中国科学院青年创新促进会项目(2022189);中国科学院青年创新促进会项目(2018226);中国科学院金属研究所优秀学者项目(2019000179)
通讯作者: 张哲峰,zhfzhang@imr.ac.cn,主要从事金属材料疲劳与断裂研究; 邵琛玮,chenweishao@imr.ac.cn,主要从事金属材料低周疲劳与断裂研究
Corresponding author: ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn; SHAO Chenwei, associate professor, Tel: (024) 83978909, E-mail: chenweishao@imr.ac.cn
作者简介: 韩婧,女,1999年生,硕士生
图1  3种晶粒尺寸Fe-22Mn-3Al-0.6C孪生诱导塑性(TWIP)钢的拉伸应力-应变曲线
图2  3种晶粒尺寸Fe-22Mn-3Al-0.6C TWIP钢在不同总应变幅下的循环应力响应曲线
图3  不同总应变幅循环加载后8和60 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢表面损伤特征
Grain size / μmCrack density / (10-4 μm-2)Crack length / μm
Δε / 2 = 0.3%Δε / 2 = 1.0%Δε / 2 = 0.3%Δε / 2 = 1.0%
81.13 ± 0.476.70 ± 0.819.05 ± 1.2521.19 ± 2.04
162.49 ± 1.164.32 ± 0.469.82 ± 0.8918.66 ± 1.79
603.57 ± 1.013.17 ± 1.3818.07 ± 1.4017.42 ± 2.10
表1  不同总应变幅循环加载后8、16和60 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢疲劳裂纹密度和裂纹长度
图4  0.3%总应变幅循环加载后8和60 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢疲劳断口宏观形貌
图5  不同总应变幅循环加载后8和60 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢疲劳裂纹扩展区形貌的SEM像
Grain size / μmΔε / 2 = 0.3%Δε / 2 = 1.0%
81.01 ± 0.106.31 ± 0.37
161.13 ± 0.164.03 ± 0.55
601.32 ± 0.233.73 ± 0.12
表2  不同总应变幅循环加载后8、16、和60 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢的疲劳辉纹间距 (μm)
图6  不同总应变幅循环加载后8 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢典型位错结构的TEM像
图7  不同总应变幅循环加载后60 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢典型位错结构的TEM像
图8  8和60 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢循环加载后的形变孪晶(簇)分布
图9  8和60 μm晶粒尺寸的Fe-22Mn-3Al-0.6C TWIP钢循环加载后的形变孪晶(簇)分布取向图
图10  3种晶粒尺寸Fe-22Mn-3Al-0.6C TWIP钢的总应变幅-寿命、饱和应力幅-寿命、饱和滞回能-寿命关系
图11  基于滞回能模型的疲劳寿命与损伤机制对应关系图
[1] Zambrano O A. A general perspective of Fe-Mn-Al-C steels [J]. J. Mater. Sci., 2018, 53: 14003
[2] Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
[3] Ding H, Tang Z Y, Li W, et al. Microstructures and mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels [J]. J. Iron Steel Res. Int., 2006, 13: 66
[4] Matteis P, Scavino G, D'Aiuto F, et al. Fatigue behavior of dual-phase and TWIP steels for lightweight automotive structures [J]. Steel Res. Int., 2012, 83: 950
[5] Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
[5] 张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
[6] Chen X, Dai Q X. Strengthening techniques for improving the metal fatigue property [J]. Shanghai Met., 2008, 30(1): 20
[6] 陈 曦, 戴起勋. 提高金属材料疲劳性能的强化技术 [J]. 上海金属, 2008, 30(1): 20
[7] Mohamed A, El-Madhoun Y, Bassim M N. The effect of grain size on low-cycle fatigue behavior of Al-2024 polycrystalline alloy [J]. Metall. Mater. Trans., 2004, 35A: 2725
[8] Luo M Y, Lam T N, Wang P T, et al. Grain-size-dependent microstructure effects on cyclic deformation mechanisms in CoCrFeMnNi high-entropy-alloys [J]. Scr. Mater., 2022, 210: 114459
[9] Wang H, Xu Y L, Sun Q Y, et al. Effect of grain size and testing temperature on low-cycle fatigue behavior and plastic deformation mode of Ti-2Al-2.5Zr [J]. Metall. Mater. Trans., 2009, 40A: 2631
[10] Rüsing C J, Niendorf T, Frehn A, et al. Low-cycle fatigue behavior of TWIP steel—Effect of grain size [J]. Adv. Mater. Res., 2014, 891-892: 1603
[11] Shao C W, Zhang P, Zhu Y K, et al. Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution [J]. Acta Mater., 2017, 134: 128
[12] Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
[13] Mahato J K, De P S, Sarkar A, et al. Grain size effect on LCF behavior of two different FCC metals [J]. Procedia Eng., 2016, 160: 85
[14] Shao C W, Zhang P, Liu R, et al. A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode [J]. Acta Mater., 2016, 118: 196
[15] Ma P H, Qian L H, Meng J Y, et al. Fatigue crack growth behavior of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2014, A605: 160
[16] Li D Q, Lin D L, Liu J L, et al. Microstructure evolution and activiation energy in superplasticity of FeAl intermetallic alloys [J]. Acta Metall. Sin., 1997, 33: 897
[16] 郦定强, 林栋梁, 刘俊亮 等. 大晶粒 FeAl合金超塑性变形的显微组织演变和变形激活能 [J]. 金属学报, 1997, 33: 897
[17] Muránsky O, Balogh L, Tran M, et al. On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques [J]. Acta Mater., 2019, 175: 297
[18] Cui L Q, Yu C H, Jiang S, et al. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96: 295
[19] Evers L P, Brekelmans W A M, Geers M G D. Non-local crystal plasticity model with intrinsic SSD and GND effects [J]. J. Mech. Phys. Solids, 2004, 52: 2379
[20] Guo P C, Qian L H, Meng J Y, et al. Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2013, A584: 133
[21] El-Danaf E, Kalidindi S R, Doherty R D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals [J]. Metall. Mater. Trans., 1999, 30A: 1223
[22] Meyers M A, Andrade U R, Chokshi A H. The effect of grain size on the high-strain, high-strain-rate behavior of copper [J]. Metall. Mater. Trans., 1995, 26A: 2881
[23] Li L H, Liu W H, Qi F G, et al. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys—A review [J]. J. Magnes. Alloy., 2022, 10: 2334
[24] Pan Q S, Lu L. Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins [J]. Acta Mater., 2014, 81: 248
[25] Picak S, Wegener T, Sajadifar S V, et al. On the low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure [J]. Acta Mater., 2021, 205: 116540
[26] Zhu C Y, Harrington T, Gray III G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
[27] Zhang Y G, He G Q, Lin Y, et al. Research on the influence mechanism of grain size on the LCF of austenitic stainless steel 321 [A]. Proceedings of the 12th CSM Steel Congress [C]. Beijing: The Chinese Society for Metals, 2019: 7
[27] 张玉刚, 何国球, 林 媛 等. 晶粒度对奥氏体不锈钢321低周疲劳影响机理的研究 [A]. 第十二届中国钢铁年会论文集 [C]. 北京: 中国金属学会, 2019: 7
[28] Liu S, Liu H Y, Chen L, et al. Recent research progress on fatigue behavior of twinning induced plasticity steels [J]. Foundry Technol., 2021, 42: 223
[28] 刘 帅, 刘焕优, 陈 林 等. 孪晶诱发塑性钢疲劳行为研究进展 [J]. 铸造技术, 2021, 42: 223
[29] Xia Y B, Wang Z G. Cyclic deformation of coarse grained polycrystalline pure Al: Ⅱ. Fracture surface morphology [J]. Acta Metall. Sin., 1992, 28: A115
[29] 夏月波, 王中光. 粗晶纯Al多晶材料的循环形变——Ⅱ. 断口形貌 [J]. 金属学报, 1992, 28: A115
[1] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[2] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[3] 屈小波, 安金敏, 王林, 李喜. 汽车用齿轮钢16MnCrS5热处理变形机理[J]. 金属学报, 2025, 61(4): 597-607.
[4] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[5] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[6] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[7] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[8] 王方圆, 张玉龙, 王章维, 熊志平, 王辉, 宋旼, 夏文真. 纳米压痕下VCoNi 中熵合金的塑性变形行为[J]. 金属学报, 2025, 61(10): 1567-1578.
[9] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[10] 柏智文, 丁志刚, 周爱龙, 侯怀宇, 刘伟, 刘峰. α-Fe单晶拉伸变形热-动力学的分子动力学模拟[J]. 金属学报, 2024, 60(6): 848-856.
[11] 官邦, 汪东红, 马洪波, 疏达, 丁正一, 崔加裕, 孙宝德. 熔模铸件尺寸控制的数字孪生建模关键技术与应用[J]. 金属学报, 2024, 60(4): 548-558.
[12] 白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
[13] 李振亮, 张欣磊, 田董扩. 多道次压缩变形对AZ80镁合金微观组织演化的影响[J]. 金属学报, 2024, 60(3): 311-322.
[14] 任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
[15] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.