|
|
|
| 晶粒尺寸对Fe-Mn-Al-C系第三代TWIP钢低周疲劳性能的影响 |
韩婧1,2, 邵琛玮1,2( ), 邱子浩1,2, 张振军1,2, 张哲峰1,2( ) |
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
| Effect of Grain Size on Low-Cycle Fatigue Properties of an Fe-Mn-Al-C Third Generation TWIP Steel |
HAN Jing1,2, SHAO Chenwei1,2( ), QIU Zihao1,2, ZHANG Zhenjun1,2, ZHANG Zhefeng1,2( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
韩婧, 邵琛玮, 邱子浩, 张振军, 张哲峰. 晶粒尺寸对Fe-Mn-Al-C系第三代TWIP钢低周疲劳性能的影响[J]. 金属学报, 2025, 61(12): 1873-1883.
Jing HAN,
Chenwei SHAO,
Zihao QIU,
Zhenjun ZHANG,
Zhefeng ZHANG.
Effect of Grain Size on Low-Cycle Fatigue Properties of an Fe-Mn-Al-C Third Generation TWIP Steel[J]. Acta Metall Sin, 2025, 61(12): 1873-1883.
| [1] |
Zambrano O A. A general perspective of Fe-Mn-Al-C steels [J]. J. Mater. Sci., 2018, 53: 14003
|
| [2] |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
|
| [3] |
Ding H, Tang Z Y, Li W, et al. Microstructures and mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels [J]. J. Iron Steel Res. Int., 2006, 13: 66
|
| [4] |
Matteis P, Scavino G, D'Aiuto F, et al. Fatigue behavior of dual-phase and TWIP steels for lightweight automotive structures [J]. Steel Res. Int., 2012, 83: 950
|
| [5] |
Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
|
| [5] |
张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
|
| [6] |
Chen X, Dai Q X. Strengthening techniques for improving the metal fatigue property [J]. Shanghai Met., 2008, 30(1): 20
|
| [6] |
陈 曦, 戴起勋. 提高金属材料疲劳性能的强化技术 [J]. 上海金属, 2008, 30(1): 20
|
| [7] |
Mohamed A, El-Madhoun Y, Bassim M N. The effect of grain size on low-cycle fatigue behavior of Al-2024 polycrystalline alloy [J]. Metall. Mater. Trans., 2004, 35A: 2725
|
| [8] |
Luo M Y, Lam T N, Wang P T, et al. Grain-size-dependent microstructure effects on cyclic deformation mechanisms in CoCrFeMnNi high-entropy-alloys [J]. Scr. Mater., 2022, 210: 114459
|
| [9] |
Wang H, Xu Y L, Sun Q Y, et al. Effect of grain size and testing temperature on low-cycle fatigue behavior and plastic deformation mode of Ti-2Al-2.5Zr [J]. Metall. Mater. Trans., 2009, 40A: 2631
|
| [10] |
Rüsing C J, Niendorf T, Frehn A, et al. Low-cycle fatigue behavior of TWIP steel—Effect of grain size [J]. Adv. Mater. Res., 2014, 891-892: 1603
|
| [11] |
Shao C W, Zhang P, Zhu Y K, et al. Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution [J]. Acta Mater., 2017, 134: 128
|
| [12] |
Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
|
| [13] |
Mahato J K, De P S, Sarkar A, et al. Grain size effect on LCF behavior of two different FCC metals [J]. Procedia Eng., 2016, 160: 85
|
| [14] |
Shao C W, Zhang P, Liu R, et al. A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode [J]. Acta Mater., 2016, 118: 196
|
| [15] |
Ma P H, Qian L H, Meng J Y, et al. Fatigue crack growth behavior of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2014, A605: 160
|
| [16] |
Li D Q, Lin D L, Liu J L, et al. Microstructure evolution and activiation energy in superplasticity of FeAl intermetallic alloys [J]. Acta Metall. Sin., 1997, 33: 897
|
| [16] |
郦定强, 林栋梁, 刘俊亮 等. 大晶粒 FeAl合金超塑性变形的显微组织演变和变形激活能 [J]. 金属学报, 1997, 33: 897
|
| [17] |
Muránsky O, Balogh L, Tran M, et al. On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques [J]. Acta Mater., 2019, 175: 297
|
| [18] |
Cui L Q, Yu C H, Jiang S, et al. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96: 295
|
| [19] |
Evers L P, Brekelmans W A M, Geers M G D. Non-local crystal plasticity model with intrinsic SSD and GND effects [J]. J. Mech. Phys. Solids, 2004, 52: 2379
|
| [20] |
Guo P C, Qian L H, Meng J Y, et al. Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2013, A584: 133
|
| [21] |
El-Danaf E, Kalidindi S R, Doherty R D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals [J]. Metall. Mater. Trans., 1999, 30A: 1223
|
| [22] |
Meyers M A, Andrade U R, Chokshi A H. The effect of grain size on the high-strain, high-strain-rate behavior of copper [J]. Metall. Mater. Trans., 1995, 26A: 2881
|
| [23] |
Li L H, Liu W H, Qi F G, et al. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys—A review [J]. J. Magnes. Alloy., 2022, 10: 2334
|
| [24] |
Pan Q S, Lu L. Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins [J]. Acta Mater., 2014, 81: 248
|
| [25] |
Picak S, Wegener T, Sajadifar S V, et al. On the low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure [J]. Acta Mater., 2021, 205: 116540
|
| [26] |
Zhu C Y, Harrington T, Gray III G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
|
| [27] |
Zhang Y G, He G Q, Lin Y, et al. Research on the influence mechanism of grain size on the LCF of austenitic stainless steel 321 [A]. Proceedings of the 12th CSM Steel Congress [C]. Beijing: The Chinese Society for Metals, 2019: 7
|
| [27] |
张玉刚, 何国球, 林 媛 等. 晶粒度对奥氏体不锈钢321低周疲劳影响机理的研究 [A]. 第十二届中国钢铁年会论文集 [C]. 北京: 中国金属学会, 2019: 7
|
| [28] |
Liu S, Liu H Y, Chen L, et al. Recent research progress on fatigue behavior of twinning induced plasticity steels [J]. Foundry Technol., 2021, 42: 223
|
| [28] |
刘 帅, 刘焕优, 陈 林 等. 孪晶诱发塑性钢疲劳行为研究进展 [J]. 铸造技术, 2021, 42: 223
|
| [29] |
Xia Y B, Wang Z G. Cyclic deformation of coarse grained polycrystalline pure Al: Ⅱ. Fracture surface morphology [J]. Acta Metall. Sin., 1992, 28: A115
|
| [29] |
夏月波, 王中光. 粗晶纯Al多晶材料的循环形变——Ⅱ. 断口形貌 [J]. 金属学报, 1992, 28: A115
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|