Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1615-1621    DOI: 10.11900/0412.1961.2022.00508
  研究论文 本期目录 | 过刊浏览 |
BZr复合添加对IN718高温合金流动性的影响
介子奇1,2, 刘鼎元2, $\boxed{\hbox{张军}}$2()
1 西安工业大学 材料与化工学院 西安 710021
2 西北工业大学 凝固技术国家重点实验室 西安 710072
Effect of Combined Addition of B and Zr on the Fluidity of IN718 Superalloy
JIE Ziqi1,2, LIU Dingyuan2, $\boxed{\hbox{Zhang Jun}}$ 2()
1 School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

介子奇, 刘鼎元, $\boxed{\hbox{张军}}$. BZr复合添加对IN718高温合金流动性的影响[J]. 金属学报, 2024, 60(12): 1615-1621.
Ziqi JIE, Dingyuan LIU, $\boxed{\hbox{Zhang Jun}}$. Effect of Combined Addition of B and Zr on the Fluidity of IN718 Superalloy[J]. Acta Metall Sin, 2024, 60(12): 1615-1621.

全文: PDF(2133 KB)   HTML
摘要: 

铸造高温合金的流动性对铸件成形和组织具有重要影响,但目前关于B和Zr元素对合金流动性的影响规律及其作用机制的研究尚不充分。本工作采用螺旋型流动性测试模型、高温激光共聚焦显微镜和双热电偶法等研究了不同B和Zr含量对IN718高温合金的流动性、凝固过程、枝晶搭接点温度及持久性能的影响,探讨了B和Zr复合添加对流动性的影响机理。结果表明,复合添加B和Zr可同时有效提高IN718高温合金的流动性和高温持久性能。合金中B和Zr含量分别为0.0059%和0.042% (质量分数)时,流动性最好,比原始合金提高了90%以上,持久寿命提高了77%。当合金中B和Zr含量较高时,枝晶在糊状区具有较低的生长速率,使得枝晶搭接点温度(TDCP)降低,增大了液相线温度(TL)与枝晶搭接温度之差(TL- TDCP),延缓了枝晶搭接,从而有利于提高熔体流动性。

关键词 IN718高温合金B和Zr流动性枝晶搭接点温度持久性能    
Abstract

The fluidity of superalloy is an important property in the manufacture of large thin-walled and complex structure castings, but superalloys show high viscosity and a wide solidification temperature range, which may lead to serious defects, low yield, and poor performance. Therefore, the manufacturing of these castings is important to improve the fluidity by regulating the alloy composition. B and Zr, as common elements in superalloys, have important effects on solidification, microstructure, and mechanical properties. However, the effect of B and Zr on the fluidity and mechanism of superalloys remain unclear. In this study, the spiral fluidity test, high-temperature confocal laser scanning microscopy, and double-thermocouple method were used to investigate the fluidity, solidification, dendrite coherency point temperature, and stress rupture property of the IN718 superalloy with various B and Zr contents, whereas the mechanism of the effect of B and Zr on fluidity was also discussed. Results show that the combined addition of B and Zr can improve the fluidity and high-temperature stress rupture property of the IN718 superalloy. At different pouring temperatures, the fluidity of the alloy increases with the increase of B and Zr contents. The optimum fluidity is obtained with 0.0059%B and 0.042%Zr (mass fraction), respectively, which is about 90% higher than that of the original alloy and increases the stress rupture life by 77%. In the IN718 superalloy with a high content of B and Zr, the dendrite growth rate in the mushy zone is low, which reduces the dendrite coherency point temperature (TDCP), increases the difference between liquidus temperature (TL) and TDCP (TL- TDCP), delays the dendrite coherency, and improves the melt fluidity.

Key wordsIN718 superalloy    boron and zirconium    fluidity    dendrite coherency point temperature    stress rupture property
收稿日期: 2022-10-12     
ZTFLH:  TG21  
基金资助:国家自然科学基金项目(51904218);国家自然科学基金项目(52031012)
通讯作者: 张 军,zhjscott@nwpu.edu.cn,主要从事铸造高温合金研究
Corresponding author: ZHANG Jun, professor, Tel: (029)88494825, E-mail: zhjscott@nwpu.edu.cn
作者简介: 介子奇,男,1985年生,博士
Alloy designationBZr
10.00260.028
20.00590.028
30.00260.042
40.00590.042
表1  不同B和Zr含量的IN718合金的化学成分 (mass fraction / %)
图1  双热电偶法测试示意图
图2  不同B和Zr含量的IN718合金的流动长度
AlloyAverage length / mmStandard deviation / %
12757.6
24168.3
34219.5
45239.6
表2  浇铸温度为1470℃时,不同Zr和B含量IN718合金的流动长度
图3  4种合金在冷却速率100℃/min下凝固过程的原位观察
AlloyLiquidus temperatureSolidus temperatureSolidification temperature range
11336.91241.695.3
21333.61232.2101.4
31334.11230.7103.4
41335.41225.2110.2
表3  高温激光共聚焦原位观察IN718合金的凝固特征温度 (oC)
图4  不同B和Zr含量IN718合金中的液相体积分数与温度的曲线
图5  IN718合金冷却过程中坩埚壁和中心之间的温度差(ΔT)曲线,及B和Zr对枝晶搭接点温度(TDCP)和液相线温度(TL)与TDCP之差(TL- TDCP)的影响
图6  不同B和Zr含量合金在650℃、620 MPa下的持久性能
图7  不同B和Zr含量合金液相体积分数和凝固时间的曲线图
AlloyInitial stageStable stageLast stage
12.96 × 10-36.12 × 10-24.34 × 10-4
21.42 × 10-35.85 × 10-22.08 × 10-4
34.71 × 10-45.57 × 10-26.99 × 10-4
44.83 × 10-44.72 × 10-23.85 × 10-5
表4  合金在不同凝固阶段的枝晶生长速率 (s-1)
1 Zhang J, Jie Z Q, Huang T W, et al. Research and development of equiaxed grain solidification and forming technology for nickel-based cast superalloys [J]. Acta Metall. Sin., 2019, 55: 1145
doi: 10.11900/0412.1961.2019.00088
1 张 军, 介子奇, 黄太文 等. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展 [J]. 金属学报, 2019, 55: 1145
2 Sun B D, Wang J, Kang M D, et al. Investment casting technology and development trend of superalloy ultra limit components [J]. Acta Metall. Sin., 2022, 58: 412
doi: 10.11900/0412.1961.2021.00569
2 孙宝德, 王 俊, 康茂东 等. 高温合金超限构件精密铸造技术及发展趋势 [J]. 金属学报, 2022, 58: 412
doi: 10.11900/0412.1961.2021.00569
3 Zielińska M, Yavorska M, Poręba M, et al. Thermal properties of cast nickel based superalloys [J]. Arch. Mater. Sci. Eng., 2010, 44: 35
4 El-Bagoury N. Ni based superalloy: Casting technology, metallurgy, development, properties and applications [J]. Int. J. Eng. Sci. Res. Technol., 2016, 5: 108
5 Jie Z Q, Zhang J, Huang T W, et al. Effects of boron and zirconium additions on the fluidity, microstructure and mechanical properties of IN718C superalloy [J]. J. Mater. Res., 2016, 31: 3557
6 Moosavy H N, Aboutalebi M R, Seyedein S H, et al. A solidification model for prediction of castability in the precipitation-strengthened nickel-based superalloys [J]. J. Mater. Process. Technol., 2013, 213: 1875
7 Zhang J, Singer R F. Effect of Zr and B on castability of Ni-based superalloy IN792 [J]. Metall. Mater. Trans., 2004, 35A: 1337
8 Qi F, Yu L X, Zhao G D, et al. Effect of Zr on solidification segregation behavior of K417G alloy and its anomalous effect during rapid cooling process [J]. J. Alloys Compd., 2020, 835: 155243
9 Zhao G D, Yu L X, Yang G L, et al. The role of boron in modifying the solidification and microstructure of nickel-base alloy U720Li [J]. J. Alloys Compd., 2016, 686: 194
10 Zhou Y, Wang B, Li S P, et al. On the segregation behavior and influences of minor alloying element Zr in nickel-based superalloys [J]. J. Alloys Compd., 2022, 897: 163169
11 Heydari D, Fard A S, Bakhshi A, et al. Hot tearing in polycrystalline Ni-based IN738LC superalloy: Influence of Zr content [J]. J. Mater. Process. Technol., 2014, 214: 681
12 Kontis P, Alabort E, Barba D, et al. On the role of boron on improving ductility in a new polycrystalline superalloy [J]. Acta Mater., 2017, 124: 489
13 Hosseini S A, Madar K Z, Abbasi S M. Effect of homogenization heat treatments on the cast structure and tensile properties of nickel-base superalloy ATI 718Plus in the presence of boron and zirconium additions [J]. Mater. Sci. Eng., 2017, A689: 103
14 Li X X, Ou M Q, Wang M, et al. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60: 177
doi: 10.1016/j.jmst.2020.02.079
15 Theska F, Buerstmayr R, Liu H, et al. Influence of grain boundary precipitation and segregation on cracking of cast and wrought superalloys containing B and Zr [J]. Mater. Charact., 2022, 187: 111881
16 Zhang J, Jie Z Q, Liu M N, et al. A method for preparing fluidity testing mould and sample of superalloy [P]. Chin Pat, 114279802A, 2022
16 张 军, 介子奇, 刘淼楠 等. 一种高温合金流动性测试模具及测试试样的制备方法 [P]. 中国专利, 114279802A, 2022
17 Yan X W, Xu Q Y, Liu Q W, et al. Dendrite growth in nickel-based superalloy with in-situ observation by high temperature confocal laser scanning microscopy and numerical simulation [J]. Mater. Lett., 2021, 286: 129213
18 Miao Z J, Shan A D, Wang W, et al. Solidification process of conventional superalloy by confocal scanning laser microscope [J]. Trans. Nonferrous Metals Soc. China, 2011, 21: 236
19 Shin J S, Ko S H, Kim K T. Development and characterization of low-silicon cast aluminum alloys for thermal dissipation [J]. J. Alloys Compd., 2015, 644: 673
20 Stangeland A, Mo A, Nielsen Ø, et al. Development of thermal strain in the coherent mushy zone during solidification of aluminum alloys [J]. Metall. Mater. Trans., 2004, 35A: 2903
21 Malekan M, Shabestari S G. Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy [J]. Metall. Mater. Trans., 2009, 40A: 3196
22 Arnberg L, Chai G, Backerud L. Determination of dendritic coherency in solidifying melts by rheological measurements [J]. Mater. Sci. Eng., 1993, A173: 101
23 Hong H U, Kim I S, Choi B G, et al. On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy [J]. Metall. Mater. Trans., 2012, 43A: 173
24 Ebner A S, Jakob S, Clemens H, et al. Grain boundary segregation in Ni-base alloys: A combined atom probe tomography and first principles study [J]. Acta Mater., 2021, 221: 117354
25 Yeh A C, Lu K W, Kuo C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2011, A530: 525
26 Tsai Y L, Wang S F, Bor H Y, et al. Effects of Zr addition on the microstructure and mechanical behavior of a fine-grained nickel-based superalloy at elevated temperatures [J]. Mater. Sci. Eng., 2014, A607: 294
27 Yan B C, Zhang J, Lou L H. Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy [J]. Mater. Sci. Eng., 2008, A474: 39
28 Xiao L, Chaturvedi M C, Chen D L. Effect of boron and carbon on the fracture toughness of IN 718 superalloy at room temperature and 650oC [J]. J. Mater. Eng. Perform., 2005, 14: 528
29 Flemings M C. Solidification processing [J]. Metall. Trans., 1974, 5: 2121
30 Campbell J. Castings [M]. 2nd ed. Oxford: Butterworth-Heinemann, 2003: 70
31 Farahany S, Idris M H, Ourdjini A, et al. Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis [J]. J. Therm. Anal. Calorim., 2015, 119: 1593
32 Grodzki J, Hartmann N, Rettig R, et al. Effect of B, Zr, and C on hot tearing of a directionally solidified nickel-based superalloy [J]. Metall. Mater. Trans., 2016, 47A: 2914
33 Liu Q M, Huang S Z, Liu F, et al. Effect of boron content on microstructure evolution during solidification and mechanical properties of K417G alloy [J]. Acta Metall. Sin., 2019, 55: 720
doi: 10.11900/0412.1961.2018.00491
33 刘巧沐, 黄顺洲, 刘 芳 等. B含量对K417G合金凝固过程中组织演变和力学性能的影响 [J]. 金属学报, 2019, 55: 720
doi: 10.11900/0412.1961.2018.00491
[1] 刘金来, 孙晶霞, 孟杰, 李金国. 一种第三代单晶高温合金的组织稳定性与持久性能[J]. 金属学报, 2024, 60(6): 770-776.
[2] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[3] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[4] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[5] 郭小童, 郑为为, 李龙飞, 冯强. 冷却速率导致的薄壁效应对K465合金显微组织和持久性能的影响[J]. 金属学报, 2020, 56(12): 1654-1666.
[6] 宋永锋, 李雄兵, 吴海平, 司家勇, 韩晓芹. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法*[J]. 金属学报, 2016, 52(3): 378-384.
[7] 赵云松,张剑,骆宇时,唐定中,冯强. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51(10): 1261-1272.
[8] 童锦艳,冯微,付超,郑运荣,冯强. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10): 1242-1252.
[9] 林惠文, 刘纪德, 周亦胄, 金涛, 孙晓峰. Pt对镍基单晶高温合金持久性能的影响[J]. 金属学报, 2015, 51(1): 77-84.
[10] 杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
[11] 熊继春, 李嘉荣, 孙凤礼, 刘世忠, 韩梅. 单晶高温合金DD6再结晶组织及其对持久性能的影响*[J]. 金属学报, 2014, 50(6): 737-743.
[12] 曹亮, 周亦胄, 金涛, 孙晓峰. 晶界角度对一种镍基双晶高温合金持久性能的影响*[J]. 金属学报, 2014, 50(1): 11-18.
[13] 肖旋,赵海强,王常帅,郭永安,郭建亭,周兰章. B和P对GH984合金组织和力学性能的影响[J]. 金属学报, 2013, 29(4): 421-427.
[14] 彭志方 党莹樱 彭芳芳. 9%-12%Cr铁素体耐热钢持久性能评估方法的研究[J]. 金属学报, 2010, 46(4): 435-443.
[15] 彭志方 蔡黎胜 彭芳芳 胡永平 陈方玉. P92钢625℃持久性能分段特征与各段中M23C6及Laves相相参数的定量变化研究[J]. 金属学报, 2010, 46(4): 429-434.