|
|
B、Zr复合添加对IN718高温合金流动性的影响 |
介子奇1,2, 刘鼎元2, $\boxed{\hbox{张军}}$2( ) |
1 西安工业大学 材料与化工学院 西安 710021 2 西北工业大学 凝固技术国家重点实验室 西安 710072 |
|
Effect of Combined Addition of B and Zr on the Fluidity of IN718 Superalloy |
JIE Ziqi1,2, LIU Dingyuan2, $\boxed{\hbox{Zhang Jun}}$ 2( ) |
1 School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China 2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
介子奇, 刘鼎元, $\boxed{\hbox{张军}}$. B、Zr复合添加对IN718高温合金流动性的影响[J]. 金属学报, 2024, 60(12): 1615-1621.
Ziqi JIE,
Dingyuan LIU,
$\boxed{\hbox{Zhang Jun}}$.
Effect of Combined Addition of B and Zr on the Fluidity of IN718 Superalloy[J]. Acta Metall Sin, 2024, 60(12): 1615-1621.
1 |
Zhang J, Jie Z Q, Huang T W, et al. Research and development of equiaxed grain solidification and forming technology for nickel-based cast superalloys [J]. Acta Metall. Sin., 2019, 55: 1145
doi: 10.11900/0412.1961.2019.00088
|
1 |
张 军, 介子奇, 黄太文 等. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展 [J]. 金属学报, 2019, 55: 1145
|
2 |
Sun B D, Wang J, Kang M D, et al. Investment casting technology and development trend of superalloy ultra limit components [J]. Acta Metall. Sin., 2022, 58: 412
doi: 10.11900/0412.1961.2021.00569
|
2 |
孙宝德, 王 俊, 康茂东 等. 高温合金超限构件精密铸造技术及发展趋势 [J]. 金属学报, 2022, 58: 412
doi: 10.11900/0412.1961.2021.00569
|
3 |
Zielińska M, Yavorska M, Poręba M, et al. Thermal properties of cast nickel based superalloys [J]. Arch. Mater. Sci. Eng., 2010, 44: 35
|
4 |
El-Bagoury N. Ni based superalloy: Casting technology, metallurgy, development, properties and applications [J]. Int. J. Eng. Sci. Res. Technol., 2016, 5: 108
|
5 |
Jie Z Q, Zhang J, Huang T W, et al. Effects of boron and zirconium additions on the fluidity, microstructure and mechanical properties of IN718C superalloy [J]. J. Mater. Res., 2016, 31: 3557
|
6 |
Moosavy H N, Aboutalebi M R, Seyedein S H, et al. A solidification model for prediction of castability in the precipitation-strengthened nickel-based superalloys [J]. J. Mater. Process. Technol., 2013, 213: 1875
|
7 |
Zhang J, Singer R F. Effect of Zr and B on castability of Ni-based superalloy IN792 [J]. Metall. Mater. Trans., 2004, 35A: 1337
|
8 |
Qi F, Yu L X, Zhao G D, et al. Effect of Zr on solidification segregation behavior of K417G alloy and its anomalous effect during rapid cooling process [J]. J. Alloys Compd., 2020, 835: 155243
|
9 |
Zhao G D, Yu L X, Yang G L, et al. The role of boron in modifying the solidification and microstructure of nickel-base alloy U720Li [J]. J. Alloys Compd., 2016, 686: 194
|
10 |
Zhou Y, Wang B, Li S P, et al. On the segregation behavior and influences of minor alloying element Zr in nickel-based superalloys [J]. J. Alloys Compd., 2022, 897: 163169
|
11 |
Heydari D, Fard A S, Bakhshi A, et al. Hot tearing in polycrystalline Ni-based IN738LC superalloy: Influence of Zr content [J]. J. Mater. Process. Technol., 2014, 214: 681
|
12 |
Kontis P, Alabort E, Barba D, et al. On the role of boron on improving ductility in a new polycrystalline superalloy [J]. Acta Mater., 2017, 124: 489
|
13 |
Hosseini S A, Madar K Z, Abbasi S M. Effect of homogenization heat treatments on the cast structure and tensile properties of nickel-base superalloy ATI 718Plus in the presence of boron and zirconium additions [J]. Mater. Sci. Eng., 2017, A689: 103
|
14 |
Li X X, Ou M Q, Wang M, et al. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60: 177
doi: 10.1016/j.jmst.2020.02.079
|
15 |
Theska F, Buerstmayr R, Liu H, et al. Influence of grain boundary precipitation and segregation on cracking of cast and wrought superalloys containing B and Zr [J]. Mater. Charact., 2022, 187: 111881
|
16 |
Zhang J, Jie Z Q, Liu M N, et al. A method for preparing fluidity testing mould and sample of superalloy [P]. Chin Pat, 114279802A, 2022
|
16 |
张 军, 介子奇, 刘淼楠 等. 一种高温合金流动性测试模具及测试试样的制备方法 [P]. 中国专利, 114279802A, 2022
|
17 |
Yan X W, Xu Q Y, Liu Q W, et al. Dendrite growth in nickel-based superalloy with in-situ observation by high temperature confocal laser scanning microscopy and numerical simulation [J]. Mater. Lett., 2021, 286: 129213
|
18 |
Miao Z J, Shan A D, Wang W, et al. Solidification process of conventional superalloy by confocal scanning laser microscope [J]. Trans. Nonferrous Metals Soc. China, 2011, 21: 236
|
19 |
Shin J S, Ko S H, Kim K T. Development and characterization of low-silicon cast aluminum alloys for thermal dissipation [J]. J. Alloys Compd., 2015, 644: 673
|
20 |
Stangeland A, Mo A, Nielsen Ø, et al. Development of thermal strain in the coherent mushy zone during solidification of aluminum alloys [J]. Metall. Mater. Trans., 2004, 35A: 2903
|
21 |
Malekan M, Shabestari S G. Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy [J]. Metall. Mater. Trans., 2009, 40A: 3196
|
22 |
Arnberg L, Chai G, Backerud L. Determination of dendritic coherency in solidifying melts by rheological measurements [J]. Mater. Sci. Eng., 1993, A173: 101
|
23 |
Hong H U, Kim I S, Choi B G, et al. On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy [J]. Metall. Mater. Trans., 2012, 43A: 173
|
24 |
Ebner A S, Jakob S, Clemens H, et al. Grain boundary segregation in Ni-base alloys: A combined atom probe tomography and first principles study [J]. Acta Mater., 2021, 221: 117354
|
25 |
Yeh A C, Lu K W, Kuo C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2011, A530: 525
|
26 |
Tsai Y L, Wang S F, Bor H Y, et al. Effects of Zr addition on the microstructure and mechanical behavior of a fine-grained nickel-based superalloy at elevated temperatures [J]. Mater. Sci. Eng., 2014, A607: 294
|
27 |
Yan B C, Zhang J, Lou L H. Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy [J]. Mater. Sci. Eng., 2008, A474: 39
|
28 |
Xiao L, Chaturvedi M C, Chen D L. Effect of boron and carbon on the fracture toughness of IN 718 superalloy at room temperature and 650oC [J]. J. Mater. Eng. Perform., 2005, 14: 528
|
29 |
Flemings M C. Solidification processing [J]. Metall. Trans., 1974, 5: 2121
|
30 |
Campbell J. Castings [M]. 2nd ed. Oxford: Butterworth-Heinemann, 2003: 70
|
31 |
Farahany S, Idris M H, Ourdjini A, et al. Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis [J]. J. Therm. Anal. Calorim., 2015, 119: 1593
|
32 |
Grodzki J, Hartmann N, Rettig R, et al. Effect of B, Zr, and C on hot tearing of a directionally solidified nickel-based superalloy [J]. Metall. Mater. Trans., 2016, 47A: 2914
|
33 |
Liu Q M, Huang S Z, Liu F, et al. Effect of boron content on microstructure evolution during solidification and mechanical properties of K417G alloy [J]. Acta Metall. Sin., 2019, 55: 720
doi: 10.11900/0412.1961.2018.00491
|
33 |
刘巧沐, 黄顺洲, 刘 芳 等. B含量对K417G合金凝固过程中组织演变和力学性能的影响 [J]. 金属学报, 2019, 55: 720
doi: 10.11900/0412.1961.2018.00491
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|