Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 737-743    DOI: 10.3724/SP.J.1037.2013.00561
  本期目录 | 过刊浏览 |
单晶高温合金DD6再结晶组织及其对持久性能的影响*
熊继春1, 李嘉荣1, 孙凤礼2, 刘世忠1, 韩梅1
1 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095
2 北京航空材料研究院第三研究室, 北京 100095
MICROSTRUCTURE OF RECRYSTALLIZATION AND THEIR EFFECTS ON STRESS RUPTURE PROPERTY OF SINGLE CRYSTAL SUPERALLOY DD6
XIONG Jichun1, LI Jiarong1, SUN Fengli2, LIU Shizhong1, HAN Mei1
1 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
2 The 3rd Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

熊继春, 李嘉荣, 孙凤礼, 刘世忠, 韩梅. 单晶高温合金DD6再结晶组织及其对持久性能的影响*[J]. 金属学报, 2014, 50(6): 737-743.
Jichun XIONG, Jiarong LI, Fengli SUN, Shizhong LIU, Mei HAN. MICROSTRUCTURE OF RECRYSTALLIZATION AND THEIR EFFECTS ON STRESS RUPTURE PROPERTY OF SINGLE CRYSTAL SUPERALLOY DD6[J]. Acta Metall Sin, 2014, 50(6): 737-743.

全文: PDF(8579 KB)   HTML
摘要: 

对单晶高温合金DD6进行表面吹砂处理, 然后分别在1100, 1200和1300 ℃保温4 h, 研究了不同加热条件下DD6合金的再结晶组织及其对持久性能的影响. 结果表明, DD6合金吹砂试样1100 ℃加热4 h形成胞状再结晶组织, 胞状再结晶晶界前沿的基体中存在大量的位错缠结, 合金的持久寿命略微降低; 1200 ℃加热4 h形成胞状再结晶与等轴再结晶同时存在的混合型再结晶组织, 合金的持久寿命降低; 1300 ℃加热4 h形成等轴再结晶组织, 等轴再结晶晶界上发现碳化物析出, 合金的持久寿命严重降低. 带有等轴再结晶组织的持久试样的断口形貌为沿晶断口, 带有胞状再结晶组织的持久试样的断口形貌为韧窝断口, 带有再结晶组织的试样裂纹起源于再结晶晶界.

关键词 单晶高温合金DD6再结晶组织持久性能    
Abstract

The specimens of single crystal superalloy DD6 were grit blasted and heat treated at 1100, 1200, and 1300 ℃ for 4 h at vacuum atmosphere respectively, then the microstructure of recrystallized DD6 alloy and their effects on the stress rupture performance were investigated. The results showed that cellular recrystallization nucleated in grit blasted samples heat treated at 1100 ℃ for 4 h, the dislocation tangles were found in the front of cellular recrystallization grain boundary in DD6 alloy, equiaxed recrystallization grains nucleated in grit blasted samples heat treated at 1300 ℃ for 4 h, and the carbides precipitate at the equiaxed recrystallization grain boundary, while the coexistence of equiaxed recrystallization grains and cellular recrystallization, defined as mixed recrystallization, occurred in the grit blasted samples heat treated at 1200 ℃ for 4 h. The cellular recrystallization reduced the stress rupture lives of DD6 alloy slightly, and the equiaxed recrystallization reduced stress rupture lives seriously, while the reduction degree of the stress rupture lives of the mixed recrystallization was between cellular recrystallization and equiaxed recrystallization. Besides this, with increase of depth of recrystallization and stress, the stresses rupture life decreased. It was also found that the fracture surface configuration was belonging to intergranular fracture with equiaxed recrystallization samples. The characteristic of the fracture surface changed to dimple fracture with cellular recrystallization samples, at all these condition the crack nucleated on the recrystallization grain boundaries of specimens during stress rupture process.

Key wordssingle crystal superalloy    DD6    recrystallization    microstructure    stress rupture property
    
ZTFLH:  TG132.3  
作者简介: null

熊继春, 男, 1981年生, 高级工程师, 博士

图1  DD6合金吹砂试样在不同热处理温度下显微组织的SEM像
图2  胞状再结晶的TEM像及HRTEM像
图3  等轴再结晶晶界的SEM像及HRTEM像
图4  不同再结晶形态的DD6合金在980 ℃, 250 MPa及1070 ℃, 160 MPa的持久寿命
图5  不同再结晶形态的DD6合金在980 ℃, 250 MPa及1070 ℃, 160 MPa的延伸率
图6  带有再结晶的DD6合金持久试样的断口形貌及断裂处的组织
[1] Gell M, Duhl D N, Giamei A F. In: Tien J K, Gell M, Maurer G, Wlodek S T eds., Superalloys 1980, Seven Springs, PA: TMS, 1980: 205
[2] Cetel A D, Duhl D N. In: Recichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Seven Springs, PA: TMS, 1988: 235
[3] Erickson G L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 35
[4] Li J R, Zhong Z G, Tang D Z, Liu S Z, Wei P, Wei P Y, Wu Z T, Huang D, Han M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 777
[5] Xiong J C, Li J R, Zhao J Q, Liu S Z. Acta Metall Sin, 2009; 45: 1232
[5] (熊继春, 李嘉荣, 赵金乾, 刘世忠. 金属学报, 2009; 45: 1232)
[6] Chen R Z. Aviat Eng Maint, 1990; 4: 22
[6] (陈荣章. 航空制造工程, 1990; 4: 22)
[7] Wei P, Li J R, Zhong Z Z. J Mater Eng, 2001; (10): 5
[7] (卫平, 李嘉荣, 钟振纲. 材料工程. 2001; (10): 5)
[8] Cox D C, Roebuck B, Rae C M F, Reed R C. Mater Sci Technol, 2003; 19: 440
[9] Li Y N, He D, Li S S, Han Y F. Acta Metall Sin, 2008; 44: 391
[9] (李亚楠, 何 迪, 李树索, 韩雅芳. 金属学报, 2008; 44: 391)
[10] Wang Z G, Zhao J C, Yan P, Zhou T T, Liu P Y. J Iron Steel Res, 2009; 21(2): 23
[10] (王志刚, 赵京晨, 燕 平, 周铁涛, 刘培英. 钢铁研究学报, 2009; 21(2): 23)
[11] Qu Y P, Liu L R, Zu G Q, Jin T, Hu Z Q. J Mater Eng, 2011; (8): 14
[11] (曲彦平, 刘丽荣, 祖国庆, 金涛, 胡壮麒. 材料工程, 2011; (8): 14)
[12] Bürgel R, Portella P D, Preuhs J. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 229
[13] Wang L, Xie G, Zhang J, Lou L H. Scr Mater, 2006; 55: 457
[14] Xie G, Zhang J, Lou L H. Scr Mater, 2008; 59: 858
[15] Xiong J C, Li J R, Liu S Z, Zhao J Q, Han M. Mater Charact, 2010; 61: 749
[16] Xie G, Wang L, Zhang J, Lou L H. Metall Mater Trans, 2008; 39A: 206
[17] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1671
[18] Wang D L, Jin T, Yang S Q, Wei Z, Li J B, Hu Z Q. Mater Sci Forum, 2007; 546-549: 1229
[19] Xie G, Wang L, Zhang J, Lou L H. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloy 2008, Seven Springs, PA: TMS, 2008: 453
[20] Li J R, Sun F L, Xiong J C, Liu S Z, Han M. Mater Sci Forum, 2010; 638-642: 2279
[21] Khan T, Caron P, Nakagawa Y G. J Met, 1986; 38(7): 16
[22] Zhang B, Liu D L, Tao C H, Jiang T. J Aero Mater, 2012; 32(6): 85
[22] (张兵, 刘德林, 陶春虎, 姜涛. 航空材料学报, 2012; 32(6): 85)
[23] Xiong J C, Li J R, Liu S Z, Han M. Chin J Nonferrous Met, 2010; 20: 1328
[23] (熊继春, 李嘉荣, 刘世忠, 韩梅. 中国有色金属学报, 2010; 20: 1328)
[24] Xiong J C, Li J R, Liu S Z. Chin J Aeronaut, 2010; 23: 478
[25] Li J R, Zhao J Q, Liu S Z, Han M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Seven Springs, PA: TMS, 2008: 443
[26] Zhang B, Lu X, Liu D L, Tao C H. Mater Sci Eng, 2012; A551: 149
[27] Meng J, Jin T, Sun X F, Hu Z Q. Mater Sci Eng, 2010; A527: 6119
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[9] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[10] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[12] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[13] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[14] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[15] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.