|
|
深度势能方法在材料科学中的应用 |
文通其( ), 刘怀忆, 龚小国, 叶贝琳, 刘思宇, 李卓远 |
香港大学 机械工程系 香港 999077 |
|
Deep Potentials for Materials Science |
WEN Tongqi( ), LIU Huaiyi, GONG Xiaoguo, YE Beilin, LIU Siyu, LI Zhuoyuan |
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China |
引用本文:
文通其, 刘怀忆, 龚小国, 叶贝琳, 刘思宇, 李卓远. 深度势能方法在材料科学中的应用[J]. 金属学报, 2024, 60(10): 1299-1311.
Tongqi WEN,
Huaiyi LIU,
Xiaoguo GONG,
Beilin YE,
Siyu LIU,
Zhuoyuan LI.
Deep Potentials for Materials Science[J]. Acta Metall Sin, 2024, 60(10): 1299-1311.
1 |
Hafner J. Atomic-scale computational materials science [J]. Acta Mater., 2000, 48: 71
|
2 |
Born M, Oppenheimer R. Zur quantentheorie der molekeln [J]. Ann. Phys., 1927, 389: 457
|
3 |
Dirac P A M. Quantum mechanics of many-electron systems [J]. Proc. Roy. Soc., 1929, 123A: 714
|
4 |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
|
5 |
Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules [J]. Phys. Rev., 1967, 159: 98
|
6 |
Zwanzig R W. High-temperature equation of state by a perturbation method. I. Nonpolar gases [J]. J. Chem. Phys., 1954, 22: 1420
|
7 |
Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Phys. Rev., 1989, 39B: 5566
|
8 |
Vink R L C, Barkema G T, van der Weg W F, et al. Fitting the Stillinger-Weber potential to amorphous silicon [J]. J. Non-Cryst. Solids, 2001, 282: 248
|
9 |
Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
|
10 |
Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
|
11 |
Prentice J C A, Aarons J, Womack J C, et al. The ONETEP linear-scaling density functional theory program [J]. J. Chem. Phys., 2020, 152: 174111
|
12 |
Hacene M, Anciaux-Sedrakian A, Rozanska X, et al. Accelerating VASP electronic structure calculations using graphic processing units [J]. J. Comput. Chem., 2012, 33: 2581
doi: 10.1002/jcc.23096
pmid: 22903247
|
13 |
Hutchinson M, Widom M. VASP on a GPU: Application to exact-exchange calculations of the stability of elemental boron [J]. Comput. Phys. Commun., 2012, 183: 1422
|
14 |
Jia W L, Cao Z Y, Wang L, et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine [J]. Comput. Phys. Commun., 2013, 184: 9
|
15 |
Jia W L, Fu J Y, Cao Z Y, et al. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines [J]. J. Comput. Phys., 2013, 251: 102
|
16 |
Bishop C M. Pattern Recognition and Machine Learning [M]. New York: Springer, 2006: 1122
|
17 |
Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects [J]. Science, 2015, 349: 255
doi: 10.1126/science.aaa8415
pmid: 26185243
|
18 |
Mahesh B. Machine learning algorithms-A review [J]. Int. J. Sci. Res., 2020, 9: 381
|
19 |
Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
|
20 |
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
|
21 |
Schütt K T, Sauceda H E, Kindermans P J, et al. SchNet—A deep learning architecture for molecules and materials [J]. J. Chem. Phys., 2018, 148: 241722
|
22 |
Schütt K T, Kessel P, Gastegger M, et al. SchNetPack: A deep learning toolbox for atomistic systems [J]. J. Chem. Theory Comput., 2019, 15: 448
doi: 10.1021/acs.jctc.8b00908
pmid: 30481453
|
23 |
Ghasemi S A, Hofstetter A, Saha S, et al. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network [J]. Phys. Rev., 2015, 92B: 045131
|
24 |
Hy T S, Trivedi S, Pan H, et al. Predicting molecular properties with covariant compositional networks [J]. J. Chem. Phys., 2018, 148: 241745
|
25 |
Unke O T, Meuwly M. PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges [J]. J. Chem. Theory Comput., 2019, 15: 3678
doi: 10.1021/acs.jctc.9b00181
pmid: 31042390
|
26 |
Pun G P, Batra R, Ramprasad R, et al. Physically informed artificial neural networks for atomistic modeling of materials [J]. Nat. Commun., 2019, 10: 2339
|
27 |
Zuo Y X, Chen C, Li X G, et al. Performance and cost assessment of machine learning interatomic potentials [J]. J. Phys. Chem., 2020, 124A: 731
|
28 |
Han J Q, Zhang L F, Car R, et al. Deep potential: A general representation of a many-body potential energy surface [J]. Commun. Comput. Phys., 2018, 23: 629
|
29 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
30 |
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
|
31 |
Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A]. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020: 1
|
32 |
Zhang D, Bi H R, Dai F Z, et al. Pretraining of attention-based deep learning potential model for molecular simulation [J]. npj Comput. Mater., 2024, 10: 94
|
33 |
Wang H, Zhang D, Liu X Z J, et al. DPA-2: Towards a universal large atomic model for molecular and materials simulation [DB/OL]. arXiv: 2312. 15492, 2024
|
34 |
Zhang L F, Han J Q, Wang H, et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems [A]. Advances in Neural Information Processing Systems [C]. Montreal, Canada, Dec.2-8, 2018
|
35 |
Perdew J P, Schmidt K. Jacob's ladder of density functional approximations for the exchange-correlation energy [J]. AIP Conf. Proc., 2001, 577: 1
|
36 |
DiStasio R A, Santra B, Li Z F, et al. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water [J]. J. Chem. Phys., 2014, 141: 084502
|
37 |
Li Z Y, Wen T Q, Zhang Y Z, et al. An extendable cloud-native alloy property explorer [DB/OL]. arXiv: 2404. 17330, 2024
|
38 |
Gasteiger J, Shuaibi M, Sriram A, et al. GemNet-OC: Developing graph neural networks for large and diverse molecular simulation datasets [J]. Trans. Mach. Learn. Res., 2022
|
39 |
Lu D H, Wang H, Chen M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy [J]. Comput. Phys. Commun., 2021, 259: 107624
|
40 |
Lu D H, Jiang W R, Chen Y X, et al. DP compress: A model compression scheme for generating efficient deep potential models [J]. J. Chem. Theory Comput., 2022, 18: 5559
doi: 10.1021/acs.jctc.2c00102
pmid: 35926122
|
41 |
Wen T Q, Wang R, Zhu L Y, et al. Specialising neural network potentials for accurate properties and application to the mechanical response of titanium [J]. npj Comput. Mater., 2021, 7: 206
|
42 |
Mendelev M I, Underwood T L, Ackland G J. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium [J]. J. Chem. Phys., 2016, 145: 154102
|
43 |
Hennig R G, Lenosky T J, Trinkle D R, et al. Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases [J]. Phys. Rev., 2008, 78B: 054121
|
44 |
Wen T Q, Zhang L F, Wang H, et al. Deep potentials for materials science [J]. Mater. Futures, 2022, 1: 022601
|
45 |
Zhang L F, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation [J]. Phys. Rev. Mater., 2019, 3: 023804
|
46 |
Wang H, Guo X, Zhang L F, et al. Deep learning inter-atomic potential model for accurate irradiation damage simulations [J]. Appl. Phys. Lett., 2019, 114: 244101
|
47 |
Clouet E, Caillard D, Chaari N, et al. Dislocation locking versus easy glide in titanium and zirconium [J]. Nat. Mater., 2015, 14: 931
doi: 10.1038/nmat4340
pmid: 26147845
|
48 |
Wang X Y, Wang Y N, Zhang L F, et al. A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment [J]. Nucl. Fusion, 2022, 62: 126013
|
49 |
Gong X G, Li Z Y, Pattamatta A S L S, et al. An accurate and transferable machine learning interatomic potential for nickel [J]. Commun. Mater., 2024, 5: 157
|
50 |
Andolina C M, Bon M, Passerone D, et al. Robust, multi-length-scale, machine learning potential for Ag-Au bimetallic alloys from clusters to bulk materials [J]. J. Phys. Chem., 2021, 125: 17438
|
51 |
Wang Y N, Zhang L F, Xu B, et al. A generalizable machine learning potential of Ag-Au nanoalloys and its application to surface reconstruction, segregation and diffusion [J]. Modell. Simul. Mater. Sci. Eng., 2022, 30: 025003
|
52 |
Chen B, Zeng Q Y, Wang H, et al. Atomistic mechanism of phase transition in shock compressed gold revealed by deep potential [DB/OL]. arXiv: 2006. 13136, 2020
|
53 |
Jiao J Y, Lai G M, Zhao L, et al. Self-healing mechanism of lithium in lithium metal [J]. Adv. Sci., 2022, 9: 2105574
|
54 |
Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9
pmid: 32461573
|
55 |
Wang J J, Shen H, Yang R Y, et al. A deep learning interatomic potential developed for atomistic simulation of carbon materials [J]. Carbon, 2022, 186: 1
|
56 |
Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
|
57 |
Li R, Lee E, Luo T. A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases [J]. Mater. Today Phys., 2020, 12: 100181
|
58 |
Yang M Y, Karmakar T, Parrinello M. Liquid-liquid critical point in phosphorus [J]. Phys. Rev. Lett., 2021, 127: 080603
|
59 |
Jain A, Ong S P, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
|
60 |
Wang H D, Zhang Y Z, Zhang L F, et al. Crystal structure prediction of binary alloys via deep potential [J]. Front. Chem., 2020, 8: 589795
|
61 |
Andolina C M, Wright J G, Das N, et al. Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential [J]. Phys. Rev. Mater., 2021, 5: 083804
|
62 |
Jiang W R, Zhang Y Z, Zhang L F, et al. Accurate deep potential model for the Al-Cu-Mg alloy in the full concentration space [J]. Chin. Phys., 2021, 30B: 050706
|
63 |
Cao G H, Liang J J, Guo Z L, et al. Liquid metal for high-entropy alloy nanoparticles synthesis [J]. Nature, 2023, 619: 73
|
64 |
Bourgeois L, Zhang Y, Zhang Z Z, et al. Transforming solid-state precipitates via excess vacancies [J]. Nat. Commun., 2020, 11: 1248
doi: 10.1038/s41467-020-15087-1
pmid: 32144262
|
65 |
Cheng B Q, Zhao X J, Zhang Y, et al. Co-segregation of Mg and Zn atoms at the planar η1-precipitate/Al matrix interface in an aged Al-Zn-Mg alloy [J]. Scr. Mater., 2020, 185: 51
|
66 |
Wen T Q, Wang C Z, Kramer M J, et al. Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds [J]. Phys. Rev., 2019, 100B: 174101
|
67 |
Tang L, Yang Z J, Wen T Q, et al. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method [J]. Phys. Chem. Chem. Phys., 2020, 22: 18467
doi: 10.1039/d0cp01689f
pmid: 32778859
|
68 |
Tang L, Yang Z J, Wen T Q, et al. Short- and medium-range orders in Al90Tb10 glass and their relation to the structures of competing crystalline phases [J]. Acta Mater., 2021, 204: 116513
|
69 |
Han I, McKeown J T, Tang L, et al. Dynamic observation of dendritic quasicrystal growth upon laser-induced solid-state transformation [J]. Phys. Rev. Lett., 2020, 125: 195503
|
70 |
Tang L, Ho K M, Wang C Z. Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential [J]. J. Chem. Phys., 2021, 155: 194503
|
71 |
Balyakin I A, Rempel S V, Ryltsev R E, et al. Deep machine learning interatomic potential for liquid silica [J]. Phys. Rev., 2020, 102E: 052125
|
72 |
Wan T Q, Luo C X, Sun Y, et al. Thermoelastic properties of bridgmanite using deep-potential molecular dynamics [J]. Phys. Rev., 2024, 109B: 094101
|
73 |
Huang J X, Zhang L F, Wang H, et al. Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors [J]. J. Chem. Phys., 2021, 154: 094703
|
74 |
Ko H Y, Zhang L, Santra B, et al. Isotope effects in liquid water via deep potential molecular dynamics [J]. Mol. Phys., 2019, 117: 3269
|
75 |
Zhang C Y, Zhang L F, Xu J H, et al. Isotope effects in x-ray absorption spectra of liquid water [J]. Phys. Rev., 2020, 102B: 115155
|
76 |
Xu J H, Zhang C Y, Zhang L F, et al. Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional [J]. Phys. Rev., 2020, 102B: 214113
|
77 |
Calio P B, Li C H, Voth G A. Resolving the structural debate for the hydrated excess proton in water [J]. J. Am. Chem. Soc., 2021, 143: 18672
doi: 10.1021/jacs.1c08552
pmid: 34723507
|
78 |
Sommers G M, Calegari Andrade M F, Zhang L F, et al. Raman spectrum and polarizability of liquid water from deep neural networks [J]. Phys. Chem. Chem. Phys., 2020, 22: 10592
doi: 10.1039/d0cp01893g
pmid: 32377657
|
79 |
Gartner T E, Zhang L F, Piaggi P M, et al. Signatures of a liquid-liquid transition in an ab initio deep neural network model for water [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 26040
doi: 10.1073/pnas.2015440117
pmid: 33008883
|
80 |
Andreani C, Romanelli G, Parmentier A, et al. Hydrogen dynamics in supercritical water probed by neutron scattering and computer simulations [J]. J. Phys. Chem. Lett., 2020, 11: 9461
doi: 10.1021/acs.jpclett.0c02547
pmid: 33108193
|
81 |
Piaggi P M, Panagiotopoulos A Z, Debenedetti P G, et al. Phase equilibrium of water with hexagonal and cubic ice using the SCAN functional [J]. J. Chem. Theory Comput., 2021, 17: 3065
doi: 10.1021/acs.jctc.1c00041
pmid: 33835819
|
82 |
Zhang L F, Wang H, Car R, et al. Phase diagram of a deep potential water model [J]. Phys. Rev. Lett., 2021, 126: 236001
|
83 |
Aragones J L, Conde M M, Noya E G, et al. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: The appearance of a plastic crystal phase [J]. Phys. Chem. Chem. Phys., 2009, 11: 543
doi: 10.1039/b812834k
pmid: 19283272
|
84 |
Tisi D, Zhang L F, Bertossa R, et al. Heat transport in liquid water from first-principles and deep neural network simulations [J]. Phys. Rev., 2021, 104B: 224202
|
85 |
Zhang C Y, Tang F J, Chen M H, et al. Modeling liquid water by climbing up Jacob's ladder in density functional theory facilitated by using deep neural network potentials [J]. J. Phys. Chem., 2021, 125B: 11444
|
86 |
Torres A, Pedroza L S, Fernandez-Serra M, et al. Using neural network force fields to ascertain the quality of ab initio simulations of liquid water [J]. J. Phys. Chem., 2021, 125B: 10772
|
87 |
Shi Y, Doyle C C, Beck T L. Condensed phase water molecular multipole moments from deep neural network models trained on ab initio simulation data [J]. J. Phys. Chem. Lett., 2021, 12: 10310
doi: 10.1021/acs.jpclett.1c02328
pmid: 34662132
|
88 |
Chen M Y, Tan L, Wang H, et al. Imperfectly coordinated water molecules pave the way for homogeneous ice nucleation [DB/OL]. arXiv: 2304. 12665, 2023
|
89 |
Xu M Y, Zhu T, Zhang J Z H. Molecular dynamics simulation of zinc ion in water with an ab initio based neural network potential [J]. J. Phys. Chem., 2019, 123A: 6587
|
90 |
Niblett S P, Galib M, Limmer D T. Learning intermolecular forces at liquid-vapor interfaces [J]. J. Chem. Phys., 2021, 155: 164101
|
91 |
Galib M, Limmer D T. Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes [J]. Science, 2021, 371: 921
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|