金属学报, 2023, 59(1): 16-30 DOI: 10.11900/0412.1961.2022.00434

综述

选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展

祝国梁,1,2, 孔德成1,2, 周文哲1,2, 贺戬1,2, 董安平1,2, 疏达1,2, 孙宝德1,2

1.上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 上海 200240

2.上海交通大学 金属基复合材料国家重点实验室 上海 200240

Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting

ZHU Guoliang,1,2, KONG Decheng1,2, ZHOU Wenzhe1,2, HE Jian1,2, DONG Anping1,2, SHU Da1,2, SUN Baode1,2

1.Shanghai Key Laboratory of Advanced High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2.State Key Laboratory of Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China

通讯作者: 祝国梁,glzhu@sjtu.edu.cn,主要从事高温合金研究

责任编辑: 肖素红

收稿日期: 2022-09-01   修回日期: 2022-10-09  

基金资助: 中国博士后科学基金项目(2022TQ0203)

Corresponding authors: ZHU Guoliang, professor, Tel: 13472640289, E-mail:glzhu@sjtu.edu.cn

Received: 2022-09-01   Revised: 2022-10-09  

Fund supported: China Postdoctoral Science Foundation(2022TQ0203)

作者简介 About authors

祝国梁,男,1983年生,研究员,博士

摘要

传统牌号高强镍基高温合金具有较宽的凝固温度区间、较高比例的低熔点共晶相,在增材制造快速非平衡凝固过程中易产生裂纹等缺陷;同时,热处理过程中残余应力释放和γ'相快速析出导致应变时效裂纹的形成,严重限制了其在激光增材制造领域的应用与推广。基于此,本文综述了近年来国内外研究组及作者团队在选区激光熔化高强镍基高温合金裂纹形成机理与抗裂纹设计(成形工艺参数优化、热处理制度调控以及合金成分设计)领域相关的研究进展,并对激光增材制造γ'相强化镍基高温合金裂纹调控的研究进行了展望。

关键词: 选区激光熔化; 高强镍基高温合金; 裂纹; 抗裂纹设计

Abstract

Traditional high-strength nickel-based superalloys have a wide solidification temperature range and high proportion of low melting point eutectic phases, which are prone to cracking during rapid nonequilibrium solidification. The residual stress release and rapid nucleation of γ' precipitate during the post-heat treatment process result in crack formation for high-strength nickel-based superalloys, which limits their application and promotion in the field of additive manufacturing. In this review, the research progress in crack formation mechanism and cracking-free design (printing parameter optimization, post-treatment regulation, and alloying design) of high-strength nickel-based superalloys fabricated via additive manufacturing is presented. Additionally, research prospects related to crack control of additively manufactured high-strength nickel-based superalloys are proposed.

Keywords: selective laser melting; high-strength nickel-based superalloy; crack; cracking-free design

PDF (4052KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30 DOI:10.11900/0412.1961.2022.00434

ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. Acta Metallurgica Sinica, 2023, 59(1): 16-30 DOI:10.11900/0412.1961.2022.00434

增材制造技术以其天然的数字化特性,可实现从宏观、介观到微观的跨尺度建模,能够近净成形复杂结构件,具有简化工序、缩短周期的优势,被誉为一种颠覆性的制造技术[1,2]。现有的金属增材制造技术包括电子束熔化、选区激光熔化、金属激光烧结、熔融沉积成形、电孤增材制造技术等。根据粉末供给方式的不同,可分为同轴送粉技术和粉末床技术;根据能量来源的不同又可分为电子束或者激光束成形等。可进行增材制造成形的材料有很多,包括高分子材料、金属材料以及陶瓷材料,不同的材料适应不同的增材制造技术。目前,不同类型的增材制造技术已逐渐在航空航天、医疗器械、电子器件、轨道交通、海洋船舶、石油化工等领域应用[3]。本文主要针对选区激光熔化(激光粉末床熔融)技术制备的镍基高温合金进行介绍。

镍基高温合金在高温条件下具有强度高、抗氧化能力强、蠕变强度和持久强度好等优点,被广泛应用于航空航天、轨道交通和船舶制造等领域。镍基高温合金是基于Cr20Ni80合金发展起来的,为满足高温热强性和高温气体介质中的抗氧化冲蚀的要求,加入了大量的强化元素,来保证其优异的高温性能[4]。现有镍基高温合金含有十多种元素,其中,Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。镍基高温合金按强化方式可分为固溶强化型合金和沉淀强化型合金,合金元素可分为固溶强化元素,如W、Mo、Co、Cr和V等;沉淀强化元素,如Al、Ti、Nb和Ta;晶界强化元素,如B、Zr和稀土元素(RE)等[4]。近年来,增材制造技术的进步加速了镍基高温合金的发展,研究热点主要包括:(1) 激光增材制造镍基高温合金凝固组织的变化规律以及与工艺参数关联关系;(2) 激光增材制造镍基高温合金中的缺陷(孔隙、裂纹、粗糙表面)的探究;(3) 激光增材制造镍基高温合金残余应力的研究;(4) 激光增材制造镍基高温合金组织调控与性能研究。其中,增材制造镍基高温合金中的冶金缺陷,尤其是打印裂纹,严重制约了镍基高温合金在激光增材制造领域的应用与推广[5,6]。与传统铸造工艺不同,激光增材制造过程中熔池内温度梯度高、冷却速率快,合金粉末要经历高能量密度热源剧烈、非稳态、周期性循环加热和冷却等超常冶金过程,易产生热应力、相变组织应力,导致增材制造样件易产生孔隙、裂纹等缺陷[7]。此外,由于残余应力释放及组织应力生成,增材制造高强镍基高温合金在后热处理过程中也易产生应变时效裂纹[8]。目前,增材制造高温合金的成形性与高承载性能难以协调是其应用的技术瓶颈,其抗开裂设计是研究难点与热点。本文首先阐述了激光增材制造γ'相强化镍基高温合金裂纹的类型、特征及形成机理;其次,从成形工艺参数优化、后处理制度调控以及合金成分设计等方面探讨了止裂设计研究进展;最后,提出了未来激光增材制造γ'相强化镍基高温合金裂纹调控的研究展望。

1 激光增材制造镍基高温合金裂纹敏感性

目前,关于镍基高温合金裂纹敏感性判据的模型大多是针对铸造或者焊接工艺制定的。1968年,Prager和Shira对沉淀硬化镍基高温合金的可焊性进行了定性预测,认为高温合金的可焊接性主要与γ'强化相形成元素(Al和Ti)相关,并根据Al和Ti含量分为不同的区域[9],如图1a[9]所示。Al、Ti含量越高,裂纹越易形成,因此,IN718和IN625等低Al、Ti含量合金具有较优异的焊接性能,这2种合金主要强化相为体心四方结构的γ"相(Ni3Nb),而辅助强化γ'相(Ni3(Al, Ti, Nb))较少[10]。据此,有学者将Al和Ti质量分数总和大于5%的高强镍基高温合金定义为难焊镍基高温合金,如IN738LC、IN713C、CM247LC等[10]。然而,部分学者认为镍基高温合金中的裂纹敏感性与其Cr、Co元素的含量也相关,并改进了对于难焊合金的定义,相关元素含量与合金焊接性的关系如图1b[11]所示。

图1

图1   镍基高温合金的可焊接性能(裂纹敏感性)与合金元素的关联[9,11]

Fig.1   Relationship between the weldability (cracking sensitivity) and alloying elements in nickel-based superalloys

(a) Al and Ti elements[9] (b) Al, Ti, Cr, and Co elements[11]


针对增材制造镍基高温合金裂纹敏感性的评价,国内外学者提出了多种参数或模型用来预测裂纹形成的倾向[12~14]。美国GE公司通过多种合金实验结果的统计表明,这些现有模型的理论预测与实测裂纹结果仍存在较大差异,并归咎为高温合金多组元成分体系与增材制造超常冶金工艺的复杂交互作用[15]。现有模型不适应于增材制造镍基高温合金的原因主要有以下2点:(1) 相比传统铸造、焊接工艺过程,激光增材制造合金的凝固速率要快得多,由于凝固过程中热裂纹对局部成分变化非常敏感,而凝固速率的差异将导致铸件和增材制造零件之间的元素配分行为不同。因此,快速凝固过程中元素分配的不准确预测将限制已有模型在增材制造领域的适用性[16];(2) 现有的大部分理论模型适合简单的二元或三元铸态试样,对于有十几种不同的元素且元素含量均较高的镍基高温合金而言,复杂的元素交互作用使得先前建立的理论适用性减弱[17]。目前,国内外大部分研究主要聚焦在激光增材制造高强镍基高温合金的裂纹开裂机理以及不同方式的抗开裂设计与优化方面,虽取得了一定的成果,但仍存在较多问题。

2 裂纹类型与开裂机理

2.1 激光增材制造镍基高温合金成形过程中的裂纹

2.1.1 凝固裂纹

镍基高温合金的凝固裂纹主要是由枝晶间高熔点的碳化物和凝固后期产生的缩孔造成的[18~20]。在熔池内材料处于固液两相共存状态时,γ枝晶干最先形成,溶质元素不断进入枝晶间的液相区,而枝晶在凝固过程中阻碍剩余熔体的填充,导致凝固后期枝晶间没有足够的液体进行有效补缩,从而凝固收缩而形成缩孔;同时,凝固时还会析出一些脆而硬的高熔点碳化物,不利于合金凝固过程中液体的补缩[21]。上述2种因素综合作用使得凝固收缩以及热收缩引起的应力在这些区域集中,造成枝晶间的熔体被撕裂。图2a1~a3[22]所示为选区激光熔化成形高强CM247LC镍基高温合金的凝固裂纹形貌,凝固裂纹断面通常具有典型的胞状/树突结构,且会在裂纹表面留下较大的形状不规则间隙。

图2

图2   选区激光熔化CM247LC高强镍基高温合金典型的裂纹形貌[22]

Fig.2   Typical cracking morphologies in selective laser melted CM247LC high-strength nickel-based superalloy (Red rectangle regions indicate the enlarged regions)[22]

(a1-a3) solidification cracks (b1-b3) liquidation cracks (c1-c3) solid cracks


2.1.2 液化裂纹

液化裂纹主要与枝晶间区域的低熔点相有关[23~25]。通常情况下,镍基高温合金中Al、Ti含量高,在激光快速加热作用下,Al、Ti元素容易在合金的晶界处发生富集,极易与γ相发生共晶反应,在激光的作用下导致晶界液化而产生液膜[26]。此外,MC型碳化物(TiC、TaC等)熔点较高,未熔融的第二相会成为晶界液膜中连接晶粒的固相桥,妨碍晶界液膜的连续性[27]。液化裂纹的形成取决于2个关键因素:晶界处的液膜和较大的拉应力。由于增材制造过程中循环加热,导致热影响区中枝晶间/晶界处的低熔点相再次熔化,当增材制造过程中产生的拉应力超过液膜表面张力所造成的抗力和固相的强度极限时,液膜被撕裂形成裂纹并沿晶界扩展,导致整个零件失效[28]图2b1~b3[22]所示为选区激光熔化CM247LC高强镍基高温合金的液化裂纹形貌及裂纹附近的共晶组织,液膜主要由胞状/枝晶边界的低熔点氮化物、Laves相和γ/γ'共晶、碳化物、(Mo2Ni)B2等组成,因此,液化裂纹具有沿晶界出现的典型特征。同时,晶界处的硼化物在加热过程中液化并释放出B原子,降低液相沿晶界铺展时所需的界面能,进而促进晶界液膜的形成,如图3[29]所示。对于晶界液化而言,晶界上的低熔点相是液膜形成的重要原因,同时,大角度晶界处的液膜开裂敏感性更高[30,31]

图3

图3   不可焊高Al、Ti镍基高温合金晶界处裂纹尖端的原子重构结果(箭头1所示为穿过γ'/GB/γ界面的一维元素分布)[29]

Fig.3   Atom probe reconstruction from a random high angle grain boundary in the cracked columnar region of a non-weldable nickel-based superalloy with high aluminum and titanium content (a), one-dimensional composition profiles across the γ'/GB/γ interface as denoted by arrow 1 in Fig.3a (b, c) (GB—grain boundary)[29]


2.1.3 固态裂纹

固态裂纹主要由增材制造过程的固有热处理效应导致,也被称为高温失塑裂纹或应变时效裂纹[32~34]。与上述的液相开裂模式不同,固态裂纹是合金完全处于固态时的开裂,不具有暴露的枝晶或液膜形貌[35]。激光增材制造过程中周期性的冷热循环会对先沉积层中的局部微结构产生固有热处理效应,当温度处在γ'相的析出温度区间时,γ'相将快速析出与长大,局部收缩产生额外拉应力。由于元素的偏析偏聚,快速析出产生的应变时效,导致应力局部集中,最终在固相中形成新裂纹或者导致原有裂纹的进一步扩展。这种再热裂纹现象也发生于焊接过程,并通常发生在高拘束焊缝的热影响区的晶界处。焊后热处理过程中,当焊接残余应力叠加相变收缩应力引起的应变超过了合金塑性时,会引起晶界再热裂纹的产生[36,37]。固态裂纹两边的表面在形状上相同,具有相对干净、笔直等特征,如图2c1~c3[22]

2.2 激光增材制造镍基高温合金热处理过程中的裂纹

激光增材制造材料在后续的热处理过程中产生的固态裂纹也是造成高强镍基高温合金产生裂纹的重要因素,但目前报道相对较少[38~40]。对于激光增材制造沉淀强化镍基高温合金,在时效温度范围会析出大量的γ'相,该相与γ基体共格且γ'相晶格常数一般小于γ相晶格常数,基体会由于共格畸变而产生较大的收缩应力,因此,增材制造高Al和Ti含量的高强镍基合金在后热处理过程中容易形成应变时效裂纹,如图4a[41]。Boswell等[42]对选区激光熔化CM247LC合金在不同温度下进行了2 h的热处理并对裂纹密度进行了统计。结果表明,在450~975℃范围内的热处理均发现新裂纹的出现,如图4b[42]。对经过600℃、2 h热处理的样品进行组织表征,发现裂纹处存在晶界滑移的现象并在晶界处发生锯齿状的开裂方式,如图4c[42]。高温失塑裂纹是一种蠕变机制性的裂纹,温度不能高到实现动态再结晶,但却足够促使晶界滑移[43]。此外,激光增材制造合金的柱状晶特征使其对失塑裂纹更加敏感,在晶界的三角连接区更易产生应力集中,从而造成孔洞或者裂纹[44]

图4

图4   不同析出相类型镍基高温合金热处理开裂的温度与时间关系[41],选区激光熔化CM247LC合金不同温度热处理2 h后裂纹密度统计,晶界处高温失塑裂纹与应变时效裂纹形貌[42]

Fig.4   Temperature and time relationship of heat treatment cracking of nickel-based superalloys with different precipitate types (t—time) (a)[41], statistics of crack density after 2 h heat-treatment at different temperatures for selective laser melted CM247LC alloy (b)[42], high temperature plasticizing crack at grain boundary (c)[42], and strain-aged crack (d)[42]


对合金进行750℃的热处理后,合金的γ'相以及晶界上的碳化物在热处理过程中长大并对晶界的滑动起到了抑制作用,但是大量强化相的快速析出导致局部强度的迅速上升以及局部塑性的明显下降[45]。同时,γ'相的快速析出也导致合金体积明显收缩,合金残余应力水平进一步加大,从而产生了应变时效裂纹,如图4d[42]。热处理温度进一步升高之后,由于平衡状态γ'相体积分数的减小以及高温对残余应力的缓解作用,850和975℃处理后的合金样品中裂纹密度下降。针对应变时效裂纹,加热速率不同,再热开裂的倾向也不同,对于某种镍基高温合金其强化相析出速率是一定的,当加热速率超过其时效硬化速率时,即快速通过中温失塑温度区间,则会缓解应变时效裂纹的产生。Thomas等[46]指出针对选区激光熔化γ'相强化镍基高温合金,当升温速率在25~60℃/min时可避免或缓解应变时效裂纹的产生。然而,这种升温速率对于热处理设备的功能要求较高,对于大型复杂构件,快速升温易使得材料受热不均,也会造成裂纹的形成。

热处理过程中产生裂纹的另一个主要原因是残余应力的释放[47,48]。残余应力是指材料内部处于平衡状态的静态应力,在增材制造过程中,局部快热或快冷会产生较大的温度梯度,容易形成热应力并残留在成形件内部[49]。在特定条件下,残余应力的释放会导致材料产生裂纹,影响材料的综合性能。残余应力的产生因素主要有塑性变形、温度梯度和固态相变。在激光增材制造加热过程中,不同位置温度不同,熔化不同步,冷却过程中凝固不同步,使得不同位置的膨胀与收缩不一致,从而产生热应力[50]。金属激光增材制造过程中,应力的产生和演变规律与焊接过程相似,但由于激光增材多层堆积过程中各种条件的差异会使冷却过程不同,热过程差异造成应力的演化与分布更加复杂。图5a[51]展示了选区激光熔化过程中残余应力形成的机制。熔池内及热影响区中的热膨胀导致局部瞬态的高压缩应力,周围材料开始屈服并发生塑性压缩变形。压缩残余应力在该区域下方形成,该区域的材料温度较低且不能发生屈服。熔池后方的凝固区域则由于体积收缩产生高的拉伸应力,因此,刚凝固的材料也发生屈服。在稳态热平衡条件下,拉伸残余应力在固化材料中保持平行且垂直于扫描方向,并与周围未熔化材料中的压缩残余应力平衡。图5b[51]中显示打印件固定到基板(体积约束)和与基板分离(自由表面) 2种情况的残余应力分布:在约束条件下,样品中主要存在拉伸应力场,该应力场由底板中的压缩应力和拉伸应力平衡,最大拉伸应力位于顶层。当样品从基板移除时,应力分布发生变化,样品中心的压应力场和底部的拉应力场平衡,而由于样品顶部的应力高于底部的应力,样品边缘在高度方向上发生弯曲[52]。成形件越大,残余应力积累越多,构件越容易发生变形、开裂等,对于大型复杂结构件,需要进行打印结构优化、路径规划、支撑设计等减轻构件内部的残余应力[53]

图5

图5   选区激光熔化过程残余应力分布和形成机制的示意图,块状样品切除基板前后的残余应力分布情况[51]

Fig.5   Schematic of residual stress distribution and formation mechanism during selective laser melting (HAZ—heat-affected zone) (a), residual stress distribution on the bulk sample before and after removed from the substrate (b)[51]


3 裂纹消除方法与抗裂纹合金设计

对于Al、Ti含量较高的难焊接镍基高温合金,由于其较高的裂纹敏感性以及快速冷却所带来的微细组织,给微观组织观察与元素作用分析带来了难度,同时,高温合金众多的元素种类也给计算模拟造成了较大难题[54]。目前,大多数的研究都集中在裂纹形成机理以及裂纹抑制方法的探索,尚难以实现兼具无裂纹与高性能的镍基高温合金的设计与制备。此部分从打印工艺参数调节、后处理工艺优化及合金成分设计等3个方面介绍增材制造镍基高温合金止裂设计的研究进展。

3.1 裂纹消除方法

3.1.1 能量密度相关参数优化

Engeli[55]研究了不同扫描速率制备的高Al、Ti含量镍基高温合金CM247LC样品的孔隙率以及裂纹密度变化。随着扫描速率的增加,裂纹密度不断减小,孔隙率逐渐升高,2者呈现出相反的变化趋势,如图6a[55]所示。同时对比了Gaussian分布以及“Doughnut” 2种不同功率分布的激光对于合金裂纹密度的影响,发现使用“Doughnut”模式分布的激光可以在相同的参数下制备出裂纹密度更低的CM247LC样品。Xu等[56]对比不同的扫描策略下的IN738LC合金的成形质量,研究发现,不论如何调节扫描速率,成形件都保持较高的裂纹密度,此外,扫描方向旋转67°的工艺比平行角度或者垂直角度工艺下的成形质量高,但材料致密度仅达到99.4%的水平,如图6b[56]。由此可知,无论调解激光速率还是能量分布,都只能起到减少裂纹密度的作用,而不能使裂纹密度下降到较低水平(≤ 0.1 mm/mm2)或者实现无裂纹打印。

图6

图6   选区激光熔化高强镍基高温合金成形质量与扫描速率和扫描策略的对应关系[55,56]

Fig.6   Relationship between forming quality and scan velocity for CM247LC (a)[55] and scanning strategy for IN738LC (Insets show the corresponding defects such as cracks and voids) (b)[56] fabricated by selective laser melting


Guo等[57]使用激光粉末床技术在连续波和脉冲波模式下制备IN738LC样品。结果表明,脉冲波的应用可以有效地消除制备样品中的裂纹,仅产生0.046%的孔隙率。数值模拟证明在连续波模式下,当激光束位于P2时,与脉冲波模式下的峰值温度(2331.32℃)相比,峰值温度达到2885.07℃。对于脉冲激光,粉末床中输入的能量密度低于连续激光束,因此,脉冲激光作用下熔池温度相对较低。如图7a和b[57]的加热(冷却)速率曲线所示,曲线从正转为负,即当激光束移向P2时,热条件从加热变为冷却。同时,脉冲波模式的应用可以增强冷却过程,相应的最大冷却速率为3.58 × 107℃/s,高于连续波模式下的1.63 × 107℃/s。因此,脉冲波制备的样品具有更精细的微观结构,而细化的晶粒结构使得打印裂纹密度大大降低,如图7c和d[57]。晶粒细化对抑制裂纹的贡献可从以下3个方面总结[58]:(1) 小角度晶界数量的增加:一方面,小角度晶界具有相对较低的晶界能量,防止液膜的形成;另一方面,增加小角度晶界能够增强晶界内聚力并缓解应变分布,从而抵消累积的残余应力;(2) 晶粒形态的变化:细化晶粒过程中会出现杂乱晶粒,使得组织中具有较大比例锯齿状形态的晶界,从而增强相邻晶粒之间的结合能力并延迟裂纹的扩展;(3) 减轻偏析:更多的晶界可以降低单位晶界处元素的浓度,从而缓解一些易开裂元素的偏析。

图7

图7   连续波和脉冲波模式下同一点(P2)的温度分布、冷却速率与时间的关系,以及连续波模式和脉冲波模型下制造的IN738LC合金的缺陷[57]

Fig.7   Calculated thermal history (temperature profiles, heating and cooling rates) versus time of the same point under the continuous-wave (a) and pulsed-wave modes (b), and the defect of the selective laser melted IN738LC alloys fabricated under the continuous-wave (c) and pulsed-wave mode (d)[57] (Tmax is the maximum temperature of the molten pool, dTdtmin is minimum cooling rate)


3.1.2 基板预热

残余应力的控制与消除决定着激光增材制造成形件质量的优劣,特别是在制造大型、大批量的部件时,当横截面面积出现大的波动时,就会出现大的温差,从而导致不均匀的散热[59]。增材制造样品主要分为预热、沉积和后处理3个过程,残余应力的形成与这几个过程都存在一定的关系。构件中的残余应力有可能会造成变形、分层,甚至会出现裂缝,如图8a[60]。沉积过程主要是工艺参数的选择,合理的工艺参数能够有效地减少成形件的残余应力。通常,对于高强镍基高温合金,基板进行500℃以上的预热处理可以显著减少成形件中的残余应力,如图8b[51]。虽然基板预热降低了残余应力,但也存在一定的弊端[61]。目前,现有的基板预热方式使得粉末床存在温度梯度,导致沿打印高度方向的成形组织不均匀,如何保证每层粉末温度均一是难点;另一方面,基板预热使粉末回收过程更加困难并增加了后续基板冷却的工作时间。此外,由于较高的温度会导致粉末更多的氧化,从而降低了粉末的循环利用与可回收性。因此,实际生产中需要多方面考虑此类方法的可适用性。此外,也可通过后热处理来降低材料残余应力,包括热等静压法、退火与固溶时效处理方式。

图8

图8   不同厚度样品基板预热前后底部开裂情况[60],基板预热温度对高强镍基高温合金裂纹密度及残余应力的影响规律[51]

Fig.8   Bottom cracking of samples with different sample heights (h) before and after preheating (a)[60], effect of substrate preheating temperature on crack density and residual stress of high-strength nickel-based superalloy (b)[51]


3.1.3 热等静压处理

热等静压(hot isostatic pressure,HIP)作为常用的激光增材制造样件后处理技术,被广泛应用于闭合高温合金内部气孔以及裂纹过程[62~64]。热等静压处理的基本原理是以气体或液体作为压力介质,材料在加热过程中经受各向均衡的压力,在高温与高压的共同作用下促进材料致密化和元素扩散[65]。经过热等静压处理后,增材制造金属的熔池边界消失,树枝晶发生溶解并形成等轴晶。Sentyurina等[66]分别针对激光增材制造技术制备的哈氏合金以及EP741NP合金进行了热等静压处理,发现合金中的裂纹以及气孔在热等静压过程中得到闭合,如图9a和b[66],但是其力学性能尤其是强度发生下降。同时,有研究[67]发现Rene88DT合金经过热等静压处理后的闭合裂纹,在进行固溶和时效热处理之后重新出现。研究证实,这些裂纹是由于γ'相的溶解以及在固溶热处理的冷却阶段细小的γ'相再析出导致的,这说明热等静压工艺不能够完全解决打印过程中出现的裂纹问题。

图9

图9   热等静压前后增材制造样品内部裂纹的形貌特征[66]以及样品表面的裂纹缺陷分布情况[55]

Fig.9   Morphological characteristics of cracks in the additive manufacturing samples before (a) and after (b) hot isostatic pressing[66], distribution of crack defects on the surface of the samples before (c) and after (d) hot isostatic pressing (Inset in Fig.9d shows the locally enlarged view)[55]


热等静压处理并不是对消除任何材料的任意缺陷都有很好的效果,存在以下不适用或不利情况[68]:(1) 热等静压对开放性缺陷起不到消除的作用,如从零件内部延伸至零件表面与外界气体介质相通的缺陷,如图9c和d[55];(2) 当零件内存在较大缺陷时,热等静压处理会在零件表面形成凹坑,造成零件严重变形,因此,热等静压处理前要考虑防止变形的措施;(3) 对于合金元素熔点差异较大的合金,热等静压可能会造成低熔点化学元素烧损,对共晶合金不适用,反而形成液化裂纹;(4) 热等静压温度和压力设置不当可能会造成零件壁厚减薄,导致材料性能变差。此外,热等静压工艺通常会导致晶粒粗大,这对后期部件的力学性能有影响。

3.2 成分设计

3.2.1 外加颗粒改性合金

外加颗粒形成复合材料是一种常用的强化改性手段。Zhou等[69]通过研究Al + Ti含量为7.0% (质量分数)的IN738LC镍基高温合金裂纹形貌特征及周围元素分布(图10[69]),确定了裂纹类型并提出了采用球磨法混入纳米碳化物(TiC)对其进行抗开裂设计的思路,使打印样品的裂纹密度从0.64 mm/mm2降低到0.02 mm/mm2。经过纳米颗粒改性之后,激光增材制造IN738LC合金的晶粒形貌由原有的粗大柱状晶逐渐向等轴晶转变,晶粒尺寸由13.8 μm减小为11.4 μm,晶粒的长径比由9.7变为3.9,同时,大角度晶界的比例由48%提升到了76%。为了探明激光增材制造镍基高温合金IN738LC裂纹产生机理,对裂纹周围的元素富集与合金中应变分布进行表征,发现在晶界处有明显的Zr元素富集并且未改性的合金中应变更加集中[70]。此外,由于裂纹的消除以及纳米颗粒的强化作用,改性后的合金强度和塑性都有了大幅提升(屈服及抗拉强度由初始的589和633 MPa分别上升到1018和1207 MPa,伸长率由1.3%提高到5.7%)。Cheng等[71]采用类似的方法通过原位化学掺杂Y2O3的创新方法在Hastelloy X球形粉末表面形成了光滑均匀的涂层,从而完全消除了选区激光熔化 Hastelloy X合金制造中的裂纹。掺杂的Y2O3颗粒提供了更多的异质形核位点,显著减小了Hastelloy X合金的晶粒和位错胞尺寸,从而抑制了裂纹的萌生和扩展,提高了Hastelloy X合金的增材制造成形性能。由此可知,第二相颗粒的添加是一种可行的抗开裂的设计思路,类似的第二相颗粒还包括TiB2、WC、TiN等等,具体种类以及含量的选择还需结合基体的材质以及工艺的设置进行筛选与优化。然而,优化后材料的性能尚缺乏系统的表征与评价,尤其是疲劳、蠕变以及耐久性能,因此,其适用性还有待进一步系统研究。

图10

图10   第二相碳化物添加前后选区激光熔化IN738LC合金裂纹情况对比及裂纹和晶界处的元素分布情况[69]

Fig.10   Comparisons of cracks (a, b) and elemental distributions at cracks and grain boundaries (c, d) of IN738LC alloy fabricated by selective laser melting before (a, c) and after (b, d) addition of second phase carbides[69] (BD—building direction, LPBF—laser powder bed fusion. Insets in Figs.10a and b show the locally enlarged views)


3.2.2 合金成分设计

合金成分的优化设计被认为是有望消除裂纹并使合金具有优异性能的最有效途径[72]。一般而言,为了确保镍基高温合金的增材制造工艺性能和高温力学性能,需要综合考虑以下因素[73]:Al + Ti含量不能太高,同时,合金中需要加入一定量的W、Mo、Ta等难熔元素以弥补低Al、Ti含量所带来的强度不足问题,提高固溶强化和析出强化的作用。另外,提高Co含量,一方面可以增加Al、Ti等元素固溶度,抑制η相的析出;另一方面能够降低基体层错能,提高抗高温蠕变能力。同时,为了提高持久性能,在合金中加入C、B、Zr等微量元素来强化晶界,但过高的Zr含量使得凝固温度范围变宽,合金中的共晶组织体积分数增加,恶化材料的打印性能。基于此,Zhou等[74]研究了C含量对典型不可焊IN738合金增材制造成形性的影响规律。当IN738合金中C含量从0.11%增加到0.3% (IN738-0.3C)和0.6% (IN738-0.6C)时,可以在很宽的工艺参数范围内产生无裂纹的样品。组织观察结果表明,随着C含量的增加,尺寸不超过200 nm的更多粒状碳化物在胞状结构的边界处形成准连续或连续网络,而胞状结构边界处含有B和γ/γ'共晶的低熔点相显著减少。由于元素偏析程度的降低、液膜起始源的消除以及局部应变浓度的降低,凝固裂纹和液化裂纹的敏感性显著降低,因此,选区激光熔化IN738-0.3C和IN738-0.6C合金分别显示出优异的极限抗拉强度(1320和1598 MPa)和优异的伸长率(14.7%和9.0%)。上述结果表明,通过合金成分优化设计可改善不可焊接高温合金增材制造成形性和力学性能[75]

Tang等[22]通过合金设计(alloys-by-design,ABD)方法实现了增材制造专用无裂纹时效强化镍基高温合金ABD-850AM和ABD-900AM的制备,如图11a~c[22]。这2种合金虽改善了微裂纹问题,但牺牲了γ'相回溶温度和体积分数(仅30%),承温能力无法达到CM247LC合金的水平,1000℃抗拉强度仅有200 MPa[76]。在这些模型中主要采用热力学计算方法,然而,经典的Scheil模型无法精确地预测元素配分情况。这主要是由于Scheil模型基于3个主要假设[77~79]:首先,假设任何时间固/液界面元素分配是平衡的;其次,假设液相中元素扩散无限快;第三,假设固相中元素不扩散。然而,在增材制造快速凝固过程中,前2个假设远远偏离实际情况。快速凝固速率使得缓慢扩散的元素在进入液相之前被捕获在固体中,这种效应通常被称为“溶质捕获”。此外,液体中的溶质没有足够的时间扩散,在固/液界面前沿堆积而产生结构性过冷。这些都会导致Scheil模型精度的降低,从而无法准确预测凝固过程的组织特征,如热裂纹敏感性。Ghoussoub等[80]进一步地采用ABD方法通过调控Co、Ti含量以及(Nb + Ta) / Al比例获得最优的抗氧化性、成形性能与力学性能,最终,成功设计出2款新型可增材制造的高承温、高持久性能的镍基高温合金,如图11d[80]所示。这2种新型合金的氧化层均为Cr2O3,具有更高的强化相体积分数且不会在打印中产生微裂纹。

图11

图11   激光增材制造无裂纹镍基高温合金设计[22]和增材制造新型镍基高温合金性能设计对比[80]

Fig.11   Design of crack-free nickel-based superalloys produced by additive manufacturing

(a) solidification temperature range and γ' phase content[22]

(b) solidification temperature range and creep life[22]

(c) solidification temperature range and strain aging crack factor[22]

(d) property design comparison of nickel-based superalloys fabricated by additive manufacturing (OAC—oxidation-assisted cracking)[80]


以上研究表明,由于高温合金元素数量多、合金化程度高、元素间交互作用复杂,调整其中任一种元素含量,均会影响合金凝固行为及相析出规律,进而改变合金的裂纹敏感性。此外,激光增材制造过程存在热场、溶质场和流场等复杂多场耦合作用,再加上增材高温合金产品服役工况均极为苛刻,使得兼顾高性能和增材适用性的高温合金设计具有较大难度,且不同材料的开裂机理存在明显差异,控制裂纹的合金设计措施也无法通用[81]

4 总结与展望

总体来看,金属增材制造技术具有微区超常冶金和快速凝固的本征属性,凝固裂纹、液化裂纹以及固态裂纹等多种类型裂纹普遍存在于传统高强牌号镍基高温合金,且严重影响构件的服役性能。激光和粉末交互作用中涉及到黏度梯度、金属蒸气等复杂的传质、传热、热冲击过程,热输入是如何影响激光加工过程中的裂纹形成仍有待深入探索,不同裂纹的临界形成条件以及裂纹形成的先后阶段等问题还有待进一步解决。同时,不同材料的开裂机理存在明显差异,控制裂纹的措施也无法沿用。虽然,本文综述的一些手段可以实现增材制造高强镍基高温合金的无裂纹成形,但这些镍基高温合金的性能与传统铸造合金相差较远,尤其是高温力学性能。因此,在保证材料性能的前提下,如何不断降低材料打印成型的裂纹敏感性,是合金成分设计与优化的难点。根据服役性能需求,提出适用于激光增材制造的镍基高温合金成分设计准则,是实现无裂纹、高性能镍基高温合金的设计与制备的关键所在。

目前,增材制造合金的优化仍处于“经验+试错”研究阶段,从时间和成本上限制了金属增材制造技术的快速发展与应用。激光增材制造γ'相强化镍基高温合金裂纹类型多且不同种类镍基高温合金主要开裂机理不同,现有的裂纹研究手段均聚焦在增材制造成形后的组织表征,难以获得裂纹萌生与扩展过程的动态和瞬时信息,成为阻碍增材制造裂纹机理研究与控制的主要原因。采用同步辐射和中子衍射等穿透性强、时空分辨率高、三维可视化的表征技术有望为增材制造技术的未来发展提供技术支撑,这些技术在增材制件缺陷的原位、动态、无损表征方面具有独特优势,可以实现金属复杂构件增材制造过程对应力、变形、相变等瞬态信息的快速在线获取与演变分析[82,83]。借助同步辐射和中子衍射技术在增材制造镍基合金、钛合金以及铝合金等金属材料的熔池冶金缺陷形成机理与调控方面还缺乏系统性研究,需进一步研究的内容主要有[84,85]:(1) 熔池冶金动力学行为及内部缺陷的同步辐射原位测试分析;(2) 微熔池超常冶金动力学特征及瞬态热质传输行为;(3)多场耦合下冶金缺陷形成机理及控制行为。除了先进实验表征技术以外,开展金属增材制造多尺度多物理场耦合仿真研究,也能够有效地揭示熔池内冶金缺陷的形成与发展机理、材料组织演化与结构变形的耦合机制[86,87]。在增材制造合金裂纹控制方面的研究工作,尚需深入开展的材料热物理相关研究有:(1) 周期性、非稳态、长期热循环作用下构件热应力、相变应力和系统约束应力的演化规律;(2) 增材构件内应力与增材制造工艺条件和零件结构的关联关系;(3) 增材制造过程中构件热-力的非稳态耦合交互作用对构件变形、开裂行为的影响;(4) 增材制造内应力累计开裂的预防控制技术。先进的实验表征技术结合高可靠的物理仿真模拟,将是未来实现增材制造材料-工艺-缺陷演变-性能的精准形性调控,提高金属增材制造产品的质量与性能的有效途径。目前,激光增材制造技术特点在材料设计与制备的优势未充分发挥,亟需发展增材制造用高温合金材料设计的新方法与新理论,推动激光增材制造高强镍基高温合金的应用与发展。

参考文献

Tang H B, Wu Y, Zhang S Q, et al.

Research status and development trend of high performance large metallic components by laser additive manufacturing technique

[J]. J. Netshape Form. Eng., 2019, 11(4): 58

[本文引用: 1]

汤海波, 吴 宇, 张述泉 .

高性能大型金属构件激光增材制造技术研究现状与发展趋势

[J]. 精密成形工程, 2019, 11(4): 58

[本文引用: 1]

Li A, Liu X F, Yu B, et al.

Key factors and developmental directions with regard to metal additive manufacturing

[J]. Chin. J. Eng., 2019, 41: 159

[本文引用: 1]

李 昂, 刘雪峰, 俞 波 .

金属增材制造技术的关键因素及发展方向

[J]. 工程科学学报, 2019, 41: 159

[本文引用: 1]

Zhang A F, Li D C, Liang S D, et al.

Development of laser additive manufacturing of high-performance metal parts

[J]. Aeronaut. Manuf. Technol., 2016, (22): 16

[本文引用: 1]

张安峰, 李涤尘, 梁少端 .

高性能金属零件激光增材制造技术研究进展

[J]. 航空制造技术, 2016, (22): 16

[本文引用: 1]

Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2008: 1

[本文引用: 2]

Panwisawas C, Tang Y T, Reed R C.

Metal 3D printing as a disruptive technology for superalloys

[J]. Nat. Commun., 2020, 11: 2327

DOI      PMID      [本文引用: 1]

Guo B J, Zhang Y S, Yang Z S, et al.

Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing

[J]. Addit. Manuf., 2022, 55: 102792

[本文引用: 1]

Harrison N J, Todd I, Mumtaz K.

Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach

[J]. Acta Mater., 2015, 94: 59

DOI      URL     [本文引用: 1]

Li C, Liu Z Y, Fang X Y, et al.

Residual stress in metal additive manufacturing

[J]. Procedia CIRP, 2018, 71: 348

DOI      URL     [本文引用: 1]

Xu J H.

Alloy design and characterization of γ′ strengthened nickel-based superalloys for additive manufacturing

[D]. Linköping University, 2021

[本文引用: 4]

Attallah M M, Jennings R, Wang X Q, et al.

Additive manufacturing of Ni-based superalloys: The outstanding issues

[J]. MRS Bull., 2016, 41: 758

DOI      URL     [本文引用: 2]

Basak A, Das S.

Additive manufacturing of nickel‐base superalloy René N5 through scanning laser epitaxy (SLE)—Material processing, microstructures, and microhardness properties

[J]. Adv. Eng. Mater., 2017, 19: 1600690

DOI      URL     [本文引用: 3]

Griffiths S, Tabasi H G, Ivas T, et al.

Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy

[J]. Addit. Manuf., 2020, 36: 101443

[本文引用: 1]

Chandra S, Tan X P, Narayan R L, et al.

A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting

[J]. Addit. Manuf., 2021, 37: 101633

Han Q Q, Gu Y C, Setchi R, et al.

Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy

[J]. Addit. Manuf., 2019, 30: 100919

[本文引用: 1]

Ghoussoub J N, Tang Y T, Panwisawas C, et al.

On the influence of alloy chemistry and processing conditions on additive manufacturability of Ni-based superalloys

[A]. Superalloys 2020 [M]. Cham: Springer, 2020: 153

[本文引用: 1]

Liang Y J, Cheng X, Wang H M.

A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification

[J]. Acta Mater., 2016, 118: 17

DOI      URL     [本文引用: 1]

Keller T, Lindwall G, Ghosh S, et al.

Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys

[J]. Acta Mater., 2017, 139: 244

DOI      PMID      [本文引用: 1]

Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).

Sun X F, Song W, Liang J J, et al.

Research and development in materials and processes of superalloy fabricated by laser additive manufacturing

[J]. Acta Metall. Sin., 2021, 57: 1471

DOI      [本文引用: 1]

The research and development progress of laser additive manufacturing technology in superalloys are summarized in this paper. The technical characteristics and application of additive manufacturing in superalloys, formation mechanism, and the types of microstructure and metallurgical defects are introduced in detail. Moreover, the defect control methods of additive manufacturing of superalloys are summarized from the aspects of laser parameters and composition design, and the direction of laser process parameter optimization and composition optimization is clarified. Finally, the future development trend and research direction of laser additive manufacturing in superalloys are summarized and prospected from the aspects of process optimization and material design.

孙晓峰, 宋 巍, 梁静静 .

激光增材制造高温合金材料与工艺研究进展

[J]. 金属学报, 2021, 57: 1471

DOI      [本文引用: 1]

概述了激光增材制造技术在高温合金中的进展。介绍了增材制造高温合金的技术特点和应用、微观组织及冶金缺陷的形成机制与种类,并从激光参数以及成分设计2个方面综述了增材制造高温合金的缺陷控制方法,明确了激光工艺参数优化与成分优化的方向。最后,从工艺和材料2个方面对激光增材制造在高温合金中的未来发展趋势与研究方向进行了展望。

Qiao S, Zhou W Z, Tan Q B, et al.

Research progress of additive manufacturing of CM247LC nickel-based superalloy

[J]. J. Netshape Form. Eng., 2022, 48(8): 93

乔 绅, 周文哲, 谭庆彪 .

镍基高温合金CM247LC增材制造研究进展

[J]. 精密成形工程, 2022, 48(8): 93

Zhou Y Z, Volek A.

Effect of carbon additions on hot tearing of a second generation nickel-base superalloy

[J]. Mater. Sci. Eng., 2008, A479: 324

[本文引用: 1]

Engeli R, Etter T, Hövel S, et al.

Processability of different IN738LC powder batches by selective laser melting

[J]. J. Mater. Process. Technol., 2016, 229: 484

DOI      URL     [本文引用: 1]

Tang Y T, Panwisawas C, Ghoussoub J N, et al.

Alloys-by-design: Application to new superalloys for additive manufacturing

[J]. Acta Mater., 2021, 202: 417

DOI      URL     [本文引用: 11]

Zhao Y S, Zhang J, Luo Y S, et al.

Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy

[J]. Acta Mater., 2019, 176: 109

DOI      [本文引用: 1]

Nowadays, it is challenging to completely eliminate low angle or high angle grain boundaries (LAGBs or HAGBs) from Nickel-based single crystal (SX) superalloys manufactured using the conventional directional solidification technique. The additions of C, B and Hf have been found to be an effective measure in improving the damage resistance of grain boundary (GB) defects, and thus increasing the creep resistance. However, the strengthening mechanism through their additions is still unclear. In this study, a double-seed solidification technique with two misorientation levels, i.e., 5 degrees and 20 degrees, was used to produce a series of bicrystal superalloys with different contents of Hf and B. It is the first report of an alloy with joint Hf and B addition that demonstrates tolerance to GBs with a misorientation as high as similar to 20 degrees under all of the creep conditions: 1100 degrees C/130 MPa, 980 degrees C/250 MPa and 760 degrees C/785 MPa. Interestingly, the effect of individual additions of Hf or B was not as pronounced as that of the joint Hf and B addition. To understand the influence of these additions on the creep mechanism in nickel-based superalloys with GB defects, a detailed characterization of the microstructures in the vicinity of the LAGBs or HAGBs was carried out, and the elemental distribution at the HAGBs was analyzed with various techniques. This study will be beneficial for understanding the role of Hf and B additions on improving the GB tolerance, and optimizing the Hf and B additions in nickel-based single crystal superalloys. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd.

Grodzki J, Hartmann N, Rettig R, et al.

Effect of B, Zr, and C on hot tearing of a directionally solidified nickel-based superalloy

[J]. Metall. Mater. Trans., 2016, 47A: 2914

Kontis P, Yusof H A M, Pedrazzini S, et al.

On the effect of boron on grain boundary character in a new polycrystalline superalloy

[J]. Acta Mater., 2016, 103: 688

DOI      URL     [本文引用: 1]

Gruber H, Hryha E, Lindgren K, et al.

The effect of boron and zirconium on the microcracking susceptibility of IN-738LC derivatives in laser powder bed fusion

[J]. Appl. Surf. Sci., 2022, 573: 151541

DOI      URL     [本文引用: 1]

Li Q G, Lin X, Wang X H, et al.

Research progress on cracking mechanism and control of laser additive repaired nickel-based superalloys with high content of Al + Ti

[J]. Appl. Laser, 2016, 36: 471

[本文引用: 1]

李秋歌, 林 鑫, 王杏华 .

高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展

[J]. 应用激光, 2016, 36: 471

[本文引用: 1]

Wang X J, Liu L, Huang T W, et al.

Grain boundary precipitation behavior in Re-containing nickel-based directionally solidified superalloys with carbon and boron additions

[J]. Vacuum, 2020, 179: 109483

DOI      URL     [本文引用: 1]

Kontis P, Chauvet E, Peng Z R, et al.

Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys

[J]. Acta Mater., 2019, 177: 209

DOI      URL     [本文引用: 3]

Ojo O A, Richards N L, Chaturvedi M C.

Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy

[J]. Scr. Mater., 2004, 50: 641

DOI      URL     [本文引用: 1]

Lu N N, Lei Z L, Hu K, et al.

Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition

[J]. Addit. Manuf., 2020, 34: 101228

[本文引用: 1]

Divya V D, Muñoz-Moreno R, Messé O M D M, et al.

Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment

[J]. Mater. Charact., 2016, 114: 62

DOI      URL     [本文引用: 1]

Acharya R, Das S.

Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: Process development, modeling, microstructural characterization, and process control

[J]. Metall. Mater. Trans., 2015, 46A: 3864

Roy I, Balikci E, Ibekwe S, et al.

Precipitate growth activation energy requirements in the duplex size γ′ distribution in the superalloy IN738LC

[J]. J. Mater. Sci., 2005, 40: 6207

DOI      URL     [本文引用: 1]

Kontis P, Collins D M, Wilkinson A J, et al.

Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation

[J]. Scr. Mater., 2018, 147: 59

DOI      URL     [本文引用: 1]

Cloots M, Uggowitzer P J, Wegener K.

Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles

[J]. Mater. Des., 2016, 89: 770

DOI      URL     [本文引用: 1]

Heydari D, Fard A S, Bakhshi A, et al.

Hot tearing in polycrystalline Ni-based IN738LC superalloy: Influence of Zr content

[J]. J. Mater. Process. Technol., 2014, 214: 681

DOI      URL     [本文引用: 1]

Bidron G, Doghri A, Malot T, et al.

Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating

[J]. J. Mater. Process. Technol., 2020, 277: 116461

DOI      URL     [本文引用: 1]

Lei Y C, Aoyagi K, Aota K, et al.

Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting

[J]. Acta Mater., 2021, 208: 116695

DOI      URL    

Messé O M D M, Muñoz-Moreno R, Illston T, et al.

Metastable carbides and their impact on recrystallisation in IN738LC processed by selective laser melting

[J]. Addit. Manuf., 2018, 22: 394

[本文引用: 1]

Lippold J C, Kiser S D, DuPont J N. Welding metallurgy and weldability of nickel-base alloys[M]. New Jersey: John Wiley & Sons, 2011: 1

[本文引用: 3]

Boswell J H, Clark D, Li W, et al.

Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy

[J]. Mater. Des., 2019, 174: 107793

DOI      URL     [本文引用: 8]

Xu J J, Lin X, Guo P F, et al.

The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy

[J]. J. Alloys Compd., 2018, 749: 859

DOI      URL     [本文引用: 1]

Xu Y L, Jin Q M, Xiao X S, et al.

Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A

[J]. Mater. Sci. Eng., 2011, A528: 4600

[本文引用: 1]

Adegoke O, Andersson J, Brodin H, et al.

Review of laser powder bed fusion of gamma-prime-strengthened nickel-based superalloys

[J]. Metals, 2020, 10: 996

DOI      URL     [本文引用: 1]

Thomas E, Roman E, Andreas K.

Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys

[P]. US, 9670572-B2, 2017

[本文引用: 1]

Basak A, Acharya R, Das S.

Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy: Computational modeling, experimental process development, and process parameter optimization

[J]. Metall. Mater. Trans., 2016, 47A: 3845

[本文引用: 1]

Megahed M, Mindt H W, N'Dri N, et al.

Metal additive-manufacturing process and residual stress modeling

[J]. Integr. Mater. Manuf. Innov., 2016, 5: 61

DOI      URL     [本文引用: 1]

Carpenter K, Tabei A.

On residual stress development, prevention, and compensation in metal additive manufacturing

[J]. Materials, 2020, 13(2): 255

DOI      URL     [本文引用: 1]

Fang Z C, Wu Z L, Huang C G, et al.

Review on residual stress in selective laser melting additive manufacturing of alloy parts

[J]. Opt. Laser Technol., 2020, 129: 106283

DOI      URL     [本文引用: 1]

Risse J.

Additive manufacturing of nickel-base superalloy IN738LC by laser powder bed fusion

[D]. Lehrstuhl: Lehrstuhl für Lasertechnik, 2019

[本文引用: 7]

Xu J H, Gruber H, Peng R L, et al.

A novel γ′-strengthened nickel-based superalloy for laser powder bed fusion

[J]. Materials, 2020, 13: 4930

DOI      URL     [本文引用: 1]

Bartlett J L, Croom B P, Burdick J, et al.

Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation

[J]. Addit. Manuf., 2018, 22: 1.

[本文引用: 1]

Johnson L, Mahmoudi M, Zhang B, et al.

Assessing printability maps in additive manufacturing of metal alloys

[J]. Acta Mater., 2019, 176: 199

DOI      [本文引用: 1]

We propose a methodology for predicting the printability of an alloy, subject to laser powder bed fusion additive manufacturing. Regions in the process space associated with keyhole formation, balling, and lack of fusion are assumed to be strong functions of the geometry of the melt pool, which in turn is calculated for various combinations of laser power and scan speed via a Finite Element thermal model that incorporates a novel vaporization-based transition from surface to volumetric heating upon keyhole formation. Process maps established from the Finite Element simulations agree with experiments for a Ni-5wt.%Nb alloy and an equiatomic CoCrFeMnNi High Entropy Alloy and suggest a strong effect of chemistry on alloy printability. The printability maps resulting from the use of the simpler Eagar-Tsai model, on the other hand, are found to be in disagreement with experiments due to the oversimplification of this approach. Uncertainties in the printability maps were quantified via Monte Carlo sampling of a multivariate Gaussian Processes surrogate model trained on simulation outputs. The printability maps generated with the proposed method can be used in the selection-and potentially the design-of alloys best suited for Additive Manufacturing. (C) 2019 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Engeli R.

Selective laser melting & heat treatment of γ′ strengthened Ni-base superalloys for high temperature applications

[D]. Zurich: ETH Zurich, 2017

[本文引用: 7]

Xu J Y, Ding Y T, Gao Y B, et al.

Grain refinement and crack inhibition of hard-to-weld Inconel 738 alloy by altering the scanning strategy during selective laser melting

[J]. Mater. Des., 2021, 209: 109940

DOI      URL     [本文引用: 4]

Guo C, Zhou Y, Li X G, et al.

A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode

[J]. J. Mater. Sci. Technol., 2021, 90: 45

DOI      [本文引用: 5]

Inconel 738 LC samples were fabricated using laser powder bed fusion under continuous-wave and pulsed-wave modes. Microstructure, surface quality and mechanical properties were compared to evaluate the printing quality between these 2 laser beam modes. The results show that the application of pulsed wave could effectively eliminate cracking in the as-fabricated sample, despite 0.046% porosity generated. Further microstructure analysis revealed that the refinement of grains by the pulsed-wave laser beam was the main contributor in eliminating the cracks. And this refinement was ascribed to the higher cooling rate under the discontinuous radiation of laser beam proofed by the numerical simulation. And the pore formation was related to Rayleigh instability and residual bubbles in the sample under the pulsed-wave mode, while pores were less detrimental to the mechanical properties than cracks. Therefore, the part under the pulsed-wave mode exhibited superior mechanical performance compared to that under the continuous-wave mode.

Zhang S Y, Lin X, Wang L L, et al.

Influence of grain inhomogeneity and precipitates on the stress rupture properties of Inconel 718 superalloy fabricated by selective laser melting

[J]. Mater. Sci. Eng., 2021, A803: 140702

[本文引用: 1]

Papadakis L, Chantzis D, Salonitis K.

On the energy efficiency of pre-heating methods in SLM/SLS processes

[J]. Int. J. Adv. Manuf. Technol., 2018, 95: 1325

DOI      URL     [本文引用: 1]

Bartlett J L, Li X D.

An overview of residual stresses in metal powder bed fusion

[J]. Addit. Manuf., 2019, 27: 131

DOI      [本文引用: 3]

Metal additive manufacturing (AM) has garnered tremendous research and industrial interest in recent years; in the field, powder bed fusion (PBF) processing is the most common technique, with selective laser melting (SLM) dominating the landscape followed by electron beam melting (EBM). Through continued process improvements, these methods are now often capable of producing high strength parts with static strengths exceeding their conventionally manufactured counterparts. However, PBF processing also results in large and anisotropic residual stresses (RS) that can severely affect fatigue properties and result in geometric distortion. The dependence of RS formation on processing variables, material properties and part geometry has made it difficult to predict efficiently and has hindered widespread acceptance of AM techniques. Substantial investigations have been conducted with regards to RS in PBF processing, which have illuminated a number of important relationships, yet a review encompassing this information has not been available. In this review, we survey and assemble the knowledge existing in the literature regarding RS in PBF processes. A discussion of background mechanics for RS development in AM is provided along with methods of measurement, highlighting the anisotropic nature of the stress fields. We then review modeling efforts and in-process experimental measurements made to advance process understanding, followed by a thorough analysis and summary of the known relationships of both material properties and processing variables to resulting RS. The current state of knowledge and future research needs for the field are discussed.

Kempen K, Thijs L, Vrancken B, et al.

Producing crack-free, high density M2 Hss parts by selective laser melting: Pre-heating the baseplate

[A]. Proceedings of the 2013 International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas at Austin, 2013: 131

[本文引用: 1]

Liu W B, Mo S D, Xie Y G, et al.

Research progress of hot isostatic pressing to eliminate the pores in metal parts prepared by additive manufacturing

[J]. Mater. Res. Appl., 2021, 15: 287

[本文引用: 1]

刘文彬, 莫仕栋, 谢月光 .

热等静压消除金属增材制造构件孔隙的研究进展

[J]. 材料研究与应用, 2021, 15: 287

[本文引用: 1]

Atkinson H V, Davies S.

Fundamental aspects of hot isostatic pressing: An overview

[J]. Metall. Mater. Trans., 2000, 31A: 2981

Han Q Q, Mertens R, Montero-Sistiaga M L, et al.

Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism

[J]. Mater. Sci. Eng., 2018, A732: 228

[本文引用: 1]

He Q G, Liu J, Li L X, et al.

Effect of hot isostatic pressing on microstructures and mechanical properties of IN738LC superalloy

[J]. Mater. Sci. Forum, 2017, 898: 401

DOI      URL     [本文引用: 1]

Sentyurina Z A, Baskov F A, Loginov P A, et al.

The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion

[J]. Addit. Manuf., 2021, 37: 101629

[本文引用: 4]

Zhao X M, Lin X, Chen J, et al.

The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming

[J]. Mater. Sci. Eng., 2009, A504: 129

[本文引用: 1]

Vilanova M, Garciandia F, Sainz S, et al.

The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy

[J]. J. Mater. Process. Technol., 2022, 300: 117398

DOI      URL     [本文引用: 1]

Zhou W Z, Zhu G L, Wang R, et al.

Inhibition of cracking by grain boundary modification in a non-weldable nickel-based superalloy processed by laser powder bed fusion

[J]. Mater. Sci. Eng., 2020, A791: 139745

[本文引用: 4]

Chen L Y, Xu J Q, Choi H, et al.

Rapid control of phase growth by nanoparticles

[J]. Nat. Commun., 2014, 5: 3879

DOI      URL     [本文引用: 1]

Cheng X P, Zhao Y N, Qian Z, et al.

Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3

[J]. Mater. Sci. Eng., 2021, A824: 141867

[本文引用: 1]

Bandyopadhyay A, Traxel K D, Lang M, et al.

Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives

[J]. Mater. Today, 2022, 52: 207

DOI      URL     [本文引用: 1]

Sun Z J, Ma Y, Ponge D, et al.

Thermodynamics-guided alloy and process design for additive manufacturing

[J]. Nat. Commun., 2022, 13: 4361

DOI      PMID      [本文引用: 1]

In conventional processing, metals go through multiple manufacturing steps including casting, plastic deformation, and heat treatment to achieve the desired property. In additive manufacturing (AM) the same target must be reached in one fabrication process, involving solidification and cyclic remelting. The thermodynamic and kinetic differences between the solid and liquid phases lead to constitutional undercooling, local variations in the solidification interval, and unexpected precipitation of secondary phases. These features may cause many undesired defects, one of which is the so-called hot cracking. The response of the thermodynamic and kinetic nature of these phenomena to high cooling rates provides access to the knowledge-based and tailored design of alloys for AM. Here, we illustrate such an approach by solving the hot cracking problem, using the commercially important IN738LC superalloy as a model material. The same approach could also be applied to adapt other hot-cracking susceptible alloy systems for AM.© 2022. The Author(s).

Zhou W Z, Tian Y S, Tan Q B, et al.

Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion

[J]. Addit. Manuf., 2022, 58: 103016

[本文引用: 1]

Wang H, Zhang X, Wang G B, et al.

Selective laser melting of the hard-to-weld IN738LC superalloy: Efforts to mitigate defects and the resultant microstructural and mechanical properties

[J]. J. Alloys Compd., 2019, 807: 151662

DOI      URL     [本文引用: 1]

Ackers M A, Messé O M D M, Hecht U.

Novel approach of alloy design and selection for additive manufacturing towards targeted applications

[J]. J. Alloys Compd., 2021, 866: 158965

DOI      URL     [本文引用: 1]

Clare A T, Mishra R S, Merklein M, et al.

Alloy design and adaptation for additive manufacture

[J]. J. Mater. Process. Technol., 2022, 299: 117358

DOI      URL     [本文引用: 1]

Knoll H, Ocylok S, Weisheit A, et al.

Combinatorial alloy design by laser additive manufacturing

[J]. Steel Res. Int., 2017, 88: 1600416

DOI      URL    

Bocklund B, Bobbio L D, Otis R A, et al.

Experimental validation of Scheil-Gulliver simulations for gradient path planning in additively manufactured functionally graded materials

[J]. Materialia, 2020, 11: 100689

DOI      URL     [本文引用: 1]

Ghoussoub J N, Klupś P, Dick-Cleland W J B, et al.

A new class of alumina-forming superalloy for 3D printing

[J]. Addit. Manuf., 2022, 52: 102608

[本文引用: 4]

Yan W T, Lin S, Kafka O L, et al.

Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

[J]. Comput. Mech., 2018, 61: 521

DOI      URL     [本文引用: 1]

Zhang N, Wang M H, Zhang S Y, et al.

Review on key common technologies of metal additive manufacturing based on synchrotron radiation and neutron diffraction analysis

[J]. Rare Met. Mater. Eng., 2022, 51: 2698

[本文引用: 1]

张 楠, 王淼辉, 张书彦 .

基于同步辐射和中子衍射分析的金属增材制造关键共性问题研究进展

[J]. 稀有金属材料与工程, 2022, 51: 2698

[本文引用: 1]

Wu Z K, Zhang J, Wu S C, et al.

Application of insitu three-dimensional synchrotron radiation X-ray tomography for defects evaluation of metal additive manufactured components

[J]. Nondestr. Test., 2020, 42(7): 46

[本文引用: 1]

吴正凯, 张 杰, 吴圣川 .

同步辐射X射线原位三维成像在金属增材制件缺陷评价中的应用

[J]. 无损检测, 2020, 42(7): 46

[本文引用: 1]

Ioannidou C, König H H, Semjatov N, et al.

In-situ synchrotron X-ray analysis of metal additive manufacturing: Current state, opportunities and challenges

[J]. Mater. Des., 2022, 219: 110790

DOI      URL     [本文引用: 1]

du Plessis A, Yadroitsava I, Yadroitsev I.

Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights

[J]. Mater. Des., 2020, 187: 108385

DOI      URL     [本文引用: 1]

Bayat M, Dong W, Thorborg J, et al.

A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies

[J]. Addit. Manuf., 2021, 47: 102278

[本文引用: 1]

Yan W T, Ge W J, Qian Y, et al.

Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting

[J]. Acta Mater., 2017, 134: 324

DOI      URL     [本文引用: 1]

/