Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 387-394    DOI: 10.3724/SP.J.1037.2013.00634
  论文 本期目录 | 过刊浏览 |
不同结构金属高速压缩力学行为及微观剪切结构差异*
孙秀荣, 王会珍, 杨平, 毛卫民
(北京科技大学材料科学与工程学院, 北京 100083)
MECHANICAL BEHAVIORS AND MICRO-SHEAR STRUCTURES OF METALS WITH DIFFERENT STRUCTURES BY HIGH-SPEED COMPRESSION
SUN Xiurong, WANG Huizhen, YANG Ping, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(8295 KB)   HTML
摘要: 

针对高锰TRIP钢、纯Cu、IF钢及装甲钢, 利用Hopkinson杆在应变率为103~104 s-1进行动态压缩实验, 考察其抗冲击性能及剪切带形成时微观组织的差异. 结果表明: 动态剪切变形下, 纯Cu和IF钢不易形成绝热剪切带, 缺乏加工硬化能力, 从而抗冲击性差; 具有马氏体组织的装甲钢快速形成绝热剪切带, 但剩余强度高, 抗高速冲击性强; 以奥氏体为主的TRIP钢有最高的加工硬化性, 形变中产生的bcc马氏体(α′-M)可有效推迟绝热剪切带的产生且裂纹不易扩展, 适于作为抗冲击材料. 纯Cu及IF钢扩展的剪切组织为拉长的亚晶和小角晶界, 剪切微织构弱, 而TRIP钢及装甲钢绝热剪切带为细小的等轴晶和大角晶界, TRIP钢形成较强的{111}-{112}<110> fcc剪切微织构, 装甲钢则形成弱的{110}<111> bcc剪切微织构.

关键词 绝热剪切带微织构动态压缩抗冲击性    
Abstract:Dynamic compression tests on high manganese TRIP steel, pure copper, IF steel and armor steel were conducted on Hopkinson bar at the strain rate of 103~104 s-1 to make comparisons of impact resistance and microstructural features. Results show that under dynamic compression, adiabatic shear bands (ASBs) do not occur easily on pure copper and IF steel. In addition, both pure copper and IF steel show a weak resistance to impact loading due to the poor work hardening capability. The ASB occurs quickly in armor steel containing martensite and the steel shows higher residual strength, which renders it suitable application in the condition of high speed deformation. TRIP steel consisting mainly of austenite has the highest work hardening rate and the α′-M induced by deformation can delay the ASBs formation and prevent the crack extension, manifesting that it is suitable for the use at high speed deformation. Elongated subgrains and low angle grain boundaries are found within the shear bands in pure copper and IF steel with weak microtextures, whereas the ASBs in both TRIP steel and armor steel demonstrate small equiaxed grains and high angle grain boundaries. Strong fcc shearing-type microtexture of {111}-{112}<110> and weak bcc shearing-type microtexture of {110}<111> are formed within ASBs of TRIP steel and armor steel respectively.
Key wordsadiabatic shear band    microtexture    dynamic compress    impact resistance
收稿日期: 2013-10-08     
ZTFLH:  TG142.33  
基金资助:*国家自然科学基金资助项目51271028
Corresponding author: YANG Ping, professor, Tel: (010)82376968, E-mail: yangp@mater.ustb.edu.cn   
作者简介: 孙秀荣, 女, 1987年生, 硕士生

引用本文:

孙秀荣, 王会珍, 杨平, 毛卫民. 不同结构金属高速压缩力学行为及微观剪切结构差异*[J]. 金属学报, 2014, 50(4): 387-394.
SUN Xiurong, WANG Huizhen, YANG Ping, MAO Weimin. MECHANICAL BEHAVIORS AND MICRO-SHEAR STRUCTURES OF METALS WITH DIFFERENT STRUCTURES BY HIGH-SPEED COMPRESSION. Acta Metall Sin, 2014, 50(4): 387-394.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00634      或      https://www.ams.org.cn/CN/Y2014/V50/I4/387

[1] Molinari A, Musquar C, Sutter G. Int J Plast, 2002; 18: 443
[2] Lee W S, Sue W C, Lin C F, Wu C J. J Mater Process Technol, 2000; 100: 116
[3] Timothy S P, Hutchings I M. Acta Metall, 1985; 33: 667
[4] Duan Z Q, Cheng G Q, Li S X, Huang D W. Acta Metall Sin, 2003; 39: 486
(段占强, 程国强, 李守新, 黄德武. 金属学报, 2003; 39: 486)
[5] Zener C, Hollomon J H. J Appl Phys, 1944; 15: 22
[6] Tang L, Chen Z Y, Zhan C K, Yang X Y, Liu C M. Metall Mater Trans, 2013; 44A: 793
[7] Chen Z Y, Tang L, Zhan C K, Yang X Y. Acta Metall Sin, 2012; 48: 315
(陈志永, 唐 林, 詹从堃, 杨续跃. 金属学报, 2012; 48: 315)
[8] Xu Y B, Zhong W L, Chen Y J, Shen L T, Liu Q, Bai Y L, Meyers M A. Mater Sci Eng, 2001; A299: 287
[9] Yang Y, Li X M, Tong X L, Zhang Q M, Xu C Y. Mater Sci Eng, 2011; A528: 3130
[10] Osovski S, Rittel D, Landau P, Venkert A. Scr Mater, 2012; 66: 9
[11] Murr L E, Ramirez A C, Gaytan S M, Lopez M I, Martinez E Y, Hernandez D H, Martinez E. Mater Sci Eng, 2009; A516: 205
[12] Peirs J, Verleysen P, Degrieck J, Coghe F. Int J Impact Eng, 2010; 37: 703.
[13] Lins J F C, Sandim H R Z, Kestenbach H J, Raabe D, Vecchio K S. Mater Sci Eng, 2007; A457: 205
[14] Duan C Z, Zhang L C. Mater Sci Eng, 2012; A532: 111
[15] Tang L, Chen Z Y, Zhan C K, Yang X Y, Liu C M, Cai H N. Mater Charact, 2012; 64: 21
[16] Yuan F P, Jiang P, Wu X L. Int J Impact Eng, 2012; 50: 1
[17] Andrade U, Meyers M A, Vecchio K S, Chokshi A H. Acta Metall Mater, 1994; 42: 3183
[18] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655
[19] Xu Y B, Yang H J, Meyers M A. Scr Mater, 2008; 58: 691
[20] Talonen J, H?nninen H, Nenonen P, Pape G. Metall Mater Trans, 2005; 36A: 421
[21] Kokawa H, Watanabe T, Karashima S. Philos Mag, 1981; 44A: 1239
[1] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[2] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[3] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[4] 陈志永 才鸿年 王富耻 谭成文 詹从堃 刘楚明. 冷轧Cu板动态压缩力学性能各向异性的研究[J]. 金属学报, 2009, 45(2): 143-150.
[5] 杨瑞青; 李守新; 李广义; 张哲峰 . 不同取向疲劳态铜单晶高速冲击下的绝热剪切带[J]. 金属学报, 2006, 42(3): 245-250 .
[6] 李军伟; 李明扬; 郭小龙; 李守新 . 疲劳态铜单晶高速形变下绝热剪切带的形成[J]. 金属学报, 2005, 41(2): 161-166 .
[7] 魏志刚; 李永池 . 冲击载荷作用下钨合金材料绝热剪切带形成机理[J]. 金属学报, 2000, 36(12): 1263-1268 .
[8] 魏志刚; 李凡庆; 李永池; 胡时胜 . 粉末烧结钨合金材料的绝热剪切变形局域化实验研究[J]. 金属学报, 1999, 35(8): 829-833 .
[9] 马宗义; 吕毓雄; 毕敬 . Al2O3,TiB2粒子增强铝基复合材料的动态压缩性能和高温蠕变性能[J]. 金属学报, 1999, 35(1): 93-97 .
[10] 张保法;沈万慈;刘英杰;王远飞;唐祥云. 白层中的绝热剪切带[J]. 金属学报, 1997, 33(11): 1161-1164.
[11] 董瀚;李桂芬;陈南平. 高强度钢中绝热剪切带的组织和硬度[J]. 金属学报, 1996, 32(6): 599-604.
[12] 李强;马常祥;赖祖涵. 30MnCrNiMoB低合金钢绝热剪切带的形成机制与微结构[J]. 金属学报, 1995, 31(23): 505-510.
[13] 杨扬;张新明;李正华;李青云. TA2/A3爆炸复合界面微观断裂机制的SEM原位研究[J]. 金属学报, 1994, 30(9): 409-415.