Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 1-16    DOI: 10.11900/0412.1961.2021.00270
  综述 本期目录 | 过刊浏览 |
冷喷涂Ni及镍基复合涂层研究进展
李文亚1(), 张正茂1, 徐雅欣1, 宋志国2, 殷硕3
1.西北工业大学 凝固技术国家重点实验室 陕西省摩擦焊接工程技术重点实验室 西安 710072
2.常州信息职业技术学院 智能装备学院 常州 213164
3.Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review
LI Wenya1(), ZHANG Zhengmao1, XU Yaxin1, SONG Zhiguo2, YIN Shuo3
1.Shaanxi Key Laboratory of Friction Welding Technologies, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2.Department of Intelligent Equipment, Changzhou College of Information Technology, Changzhou 213164, China
3.Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
引用本文:

李文亚, 张正茂, 徐雅欣, 宋志国, 殷硕. 冷喷涂Ni及镍基复合涂层研究进展[J]. 金属学报, 2022, 58(1): 1-16.
Wenya LI, Zhengmao ZHANG, Yaxin XU, Zhiguo SONG, Shuo YIN. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. Acta Metall Sin, 2022, 58(1): 1-16.

全文: PDF(3326 KB)   HTML
摘要: 

Ni及其合金具有良好的耐腐蚀和高温抗氧化性能,而冷喷涂技术具有热输入少、涂层组织致密、沉积效率高和沉积速度快等优势,为制备良好耐腐蚀性能的Ni及镍基复合涂层提供了可行的新方法。本文根据已有研究报道,对冷喷涂过程中Ni粉的临界速度和粒子速度预测进行了详细总结,并对其沉积特性和结合机理进行了分析;冷喷涂Ni及镍基复合涂层的性能改善可以通过喷嘴参数、粉末和气体参数的调控来实现;冷喷涂技术与激光处理、喷丸处理、热轧处理等其他技术相结合可以进一步提升涂层质量;陶瓷颗粒的加入能提高Ni及镍基复合涂层的强度和耐腐蚀性能。最后,对冷喷涂Ni及镍基复合涂层的广泛应用进行了展望,并提出了几点研究方向。

关键词 冷喷涂Ni镍合金复合涂层涂层性能后处理    
Abstract

Nickel and its alloys have good corrosion and high-temperature oxidation resistance. Cold-spraying (CS) can be applied to Ni and Ni-based composite coatings with good corrosion resistance, due to its advantages of low heat input, dense microstructure, high deposition efficiency, and fast deposition rate, etc. In terms of the open publications, this study summarized the prediction of the critical and particle velocities of Ni-powder particles during CS and then analyzed its deposition characteristics and bonding mechanisms; the property improvement of cold-sprayed Ni and Ni-based composite coatings can be achieved by adjusting the nozzle, powder, and gas parameters; CS combined with laser processing, shot peening, hot rolling, and other technologies can further improve the coating quality; the addition of ceramic particles can increase the strength and corrosion resistance of Ni and Ni-based composite coatings. Finally, several expectations for the widespread application of cold-sprayed Ni and Ni-based composite coatings were presented.

Key wordscold spraying    nickel    nickel alloy    composite coating    coating property    post treatment
收稿日期: 2021-07-02     
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(52061135101);凝固技术国家重点实验室(西北工业大学)自主研究课题项目(2021-TZ-01);凝固技术国家重点实验室(西北工业大学)开放课题项目(SKLSP202011)
作者简介: 李文亚,liwy@nwpu.edu.cn,主要从事冷喷涂与摩擦焊接工艺基础及应用研究,男,1967年生,教授,博士
图1  冷喷涂系统及原理示意图[6]
图2  公式估算(Eq.(1))的各种材料的临界速度以及Cu和Al的有限元分析值(FEA)和实验测量值(Exp.)[28]
图3  冷喷涂粒子临界速度、颗粒碰撞速度与颗粒尺寸的关系[29]
图4  冷喷涂Al、Ni、Cu、Zn的碰撞速度和回弹系数(临界速度以上时,回弹系数为零)[36]
MethodValue / (m·s-1)Pros and cons
Numerical simulation576 (Ni/Cu)[28]Poor accuracy;
620-630 (Ni/Ni)[30]convenient;
fast and economical
Deposition efficiency582 (Ni/Cu)[35]Moderate accuracy and experiment cost;
unable to consider the influence of factors such as particle size in detail
Single particle measurement512 (Ni/Cu)[35]The accuracy is the highest;
650-660 (Ni/Ni)[36]the influence of factors such as size and oxide film can be considered
表1  不同方法预测Ni粒子临界速度及各自优缺点[28,30,35,36]
图5  冷喷涂Ni涂层显微组织的TEM像(粒子与粒子的边界用箭头标记)[48]
图6  Ni涂层截面的EBSD表征[49](a) Euler angle diagram(b) pattern quality diagram in the same area as Fig.6a
图7  动态再结晶过程示意图[49]
图8  Ni涂层在不同粉末预热温度下截面显微组织的SEM像[60](a) 300oC (The inset is the FE-SEM image with powder added)(b) 400oC (The inset is the box higher magnification of the area)(c) 500oC (d) 600oC
图9  不同金属在不同N2温度下的沉积效率[62]
图10  冷喷涂Ni涂层沉积效率随喷涂角度的变化规律[63]
图11  基体温度为25、200和400℃时,沉积在Cu基体上的单个Ni粒子的温度演变[67]
图12  400和600℃退火1 h冷喷涂Ni涂层截面的反极图(IPF)和图像质量(IQ)图[69]
Powder/substratePreparation conditionMain resultRef.

Powder: GA-Ni with an average particle size of 35 μm;

substrate: grit blasted low carbon steel

N2; 2.5 MPa; 600oC

Powder preheating temperature (oC):

300, 400, 500, 600

500oC: (274 ± 19) HV0.1, DE: 95%

600oC: (278 ± 15) HV0.1, DE: 90%

[60]

Powder: 26-44 μm GA-Ni;

substrate: grit blasted low carbon steel

N2; 2.5 MPa; 600oC

He; 1.5 MPa; 600oC

N2: 275 HV0.1, DE: 90%

He: 313 HV0.1, DE: 20%

[31]

Powder: 20-30 nm GA-Ni;

substrate: grit blasted Al

He; 1.7 MPa; 25oC(605 ± 13) HV300g[45]

Powder: GA-Ni and E-Ni with an average particle size of 34 and 31 μm;

substrate: 1Cr18Ni9 stainless steel

N2; 2.8 MPa; 400oC

GA-Ni: undeposited

E-Ni : (605 ± 13) HV0.3, DE:73%

[24]

Powder: E-Ni with an average particle size of 34 μm;

substrate: grit blasted 410 stainless steel

N2; 2.8 MPa;

gas temperature (oC): 350, 400, 450

350oC: 153 HV0.3, DE: 43.4%

400oC: 194 HV0.3, DE: 73.3%

450oC: 201 HV0.3, DE: 79.7%

[63]

Powder: 10-45 μm GA-Ni

substrate: Al; the surface treatments are polish, ground, grit-blast (2.5 μm), and grit-blast (6.5 μm)

Compressed air; 2.5 MPa; 600oC

Bonding strength: 30 MPa;

25 MPa; 15 MPa; 18 MPa

[66]

Powder: 20-40 μm GA-Ni

substrate: grit blasted low carbon steel

N2; 3.6 MPa; 700oC

heat treatment temperature: 600oC

As-sprayed: 238 HV0.3

Heat-treated: 124 HV0.3

[71]

表2  现有冷喷涂Ni涂层部分文献主要结果[24,31,45,60,63,66,71]
图13  50Ni-50Ti涂层截面显微组织的OM像[86]
Powder/substrate

Preparation

condition

Main resultRef.

Powder 1: 35-87 μm Ni-coated Fe-9.6%Si-5.4%Al

(FeSiAl 62%)

powder 2: 28-58 μm; FeSiAl 60%;

substrate: stainless steel

Compressed air;

2.6 MPa, 550oC;

2.6 MPa, 620oC;

3.0 MPa, 620oC;

3.0 MPa, 650oC

Hardness (HV0.1):

powder 1: 350, 340, 330, 335

powder 2: 280, 275, 273, 269

[87]

Powder: NiCra;

NiCr + 50 Al2O3b;

NiCr + 30WC-Co-Crc

substrate: carbon steel

N2; 700oC; 3.6 MPaa,

3.9 MPab,

3.7 MPac

Hardness: 238 HV0.3a;

398 HV0.3b;

340 HV0.3c

[71]

Powder: 50Ni-50Ti

substrate: carbon steel

Compressed air;

2.7 MPa;

510oC

Coating thickness: 20-30 μm

hardness: (224.7 ± 20.9) HV0.2

[86]

Powder: Ni-20Cr

substrate: SA 516 boiler steel

Compressed air;

1.9 MPa;

450oC

Coating thickness: (250 ± 12) μm

hardness: 586 HV

[79]

Powder: Ni-50Cr

substrate: Superni 75

N2;

3.0 MPa;

600oC

Coating thickness: 298 μm

porosity: 0.875%

hardness: 533.5 HV

[80]

Powder 1: Diamalloy 1005 alloy;

powder 2: Diamalloy 1060 alloy

substrate: carbon steel

N2;

4.0 MPa;

800oC;

spraying distance: 40 mm

Powder 1:

coating thickness: (497 ± 39) μm

porosity: 0.21% ± 0.1%

hardness: (6.4 ± 0.5) GPa

powder 2:

coating thickness: (346 ± 23) μm

Porosity: 1.5% ± 0.2%

hardness: (5.7 ± 1.2) GPa

[85]

表3  部分冷喷涂镍基复合涂层结果[71,79,80,85~87]
图14  喷涂后Ni-Al2O3复合涂层表面形貌的SEM像[93]
1 Li W Y, Li C J. Characteristics of cold spray process [J]. China Surf. Eng., 2002, 15(1): 12
1 李文亚, 李长久. 冷喷涂特性 [J]. 中国表面工程, 2002, 15(1): 12
2 Wu J, Jin H Z, Wu M J, et al. Developments in cold gas dynamic spray techndogy [J]. Mater. Rev., 2003, 17(1): 59
2 吴 杰, 金花子, 吴敏杰等. 冷气动力喷涂技术研究进展 [J]. 材料导报, 2003, 17(1): 59
3 Xiong T Y, Wu J, Jin H Z, et al. Introduction to a new technology—Cold gas dynamic spray [J]. Corros. Sci. Prot. Technol., 2001, 13: 267
3 熊天英, 吴 杰, 金花子等. 一种新喷涂技术——冷气动力喷涂 [J]. 腐蚀科学与防护技术, 2001, 13: 267
4 Li W Y, Yang K, Yin S, et al. Solid-state additive manufacturing and repairing by cold spraying: A review [J]. J. Mater. Sci. Technol., 2018, 34: 440
5 Papyrin A. Cold spray technology [J]. Adv. Mater. Processes, 2001, 159: 49
6 Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: Fundamentals and applications [J]. Addit. Manuf., 2018, 21: 628
7 Ajdelsztajn L, Schoenung J M, Jodoin B, et al. Cold spray deposition of nanocrystalline aluminum alloys [J]. Metall. Mater. Trans., 2005, 36A: 657
8 Sun C C, Ning X J, Liang X L, et al. Dynamic mechanical properties and numerical analysis of cold sprayed pure copper coating [A]. The 10th National Surface Engineering Conference and the 6th National Youth Surface Engineering Forum [C]. Wuhan: Professional Committee of Coating and Surface Protection Technology of China Society of Corrosion and Protection, 2014: 1
8 孙澄川, 宁先进, 梁小龙等. 冷喷涂纯铜涂层动态力学性能与数值分析 [A]. 第十届全国表面工程大会暨第六届全国青年表面工程论坛论文摘要集(一) [C]. 武汉: 中国腐蚀与防护学会涂料涂装及表面保护技术专业委员会, 2014: 1
9 Bakshi S R, Wang D, Price T, et al. Microstructure and wear properties of aluminum/aluminum-silicon composite coatings prepared by cold spraying [J]. Surf. Coat. Technol., 2009, 204: 503
10 Zhang Z H, Jiang R R, Li W Y. Influence of cold sprayed aluminum coating on the mechanical properties of friction stir welded 2024 aluminum alloy joints [J]. J. Mech. Eng., 2015, 51(22): 42
10 张志函, 蒋若蓉, 李文亚. 冷喷铝涂层对2024铝合金搅拌摩擦焊接头力学性能的影响 [J]. 机械工程学报, 2015, 51(22): 42
11 Li C J, Li W Y. Deposition characteristics of titanium coating in cold spraying [J]. Surf. Coat. Technol., 2003, 167: 278
12 Li W Y, Cao C C, Yang X W, et al. Cold spraying hybrid processing technology and its application [J]. J. Mater. Eng., 2019, 47(11): 53
12 李文亚, 曹聪聪, 杨夏炜等. 冷喷涂复合加工制造技术及其应用 [J]. 材料工程, 2019, 47(11): 53
13 Chen C G. Repair of the surface of an engine's central transmission casing by cold spraying [J]. Sci. Technol. Innov., 2020, (13): 176
13 陈朝刚. 某发动机中央传动机匣表面冷喷涂修复 [J]. 科学技术创新, 2020, (13): 176
14 Gu P. Cold spray for structural repair [J]. Aerosp. Power, 2018, (3): 63
14 谷 平. 冷喷涂用于结构修理 [J]. 航空动力, 2018, (3): 63
15 Huang R Z, Sun W, Guo S Q, et al. Research developments and applications of cold spray technology [J]. China Surf. Eng., 2020, 33(4): 16
15 黄仁忠, 孙 文, 郭双全等. 冷喷涂技术的研究进展与应用 [J]. 中国表面工程, 2020, 33(4): 16
16 Ma K, Li C X. Vacuum cold spraying technology and its application in functional devices [J]. China Surf. Eng., 2020, 33(4): 26
16 马 凯, 李成新. 真空冷喷涂技术及其在功能器件中的应用 [J]. 中国表面工程, 2020, 33(4): 26
17 Wang J Q, Cui X Y, Xiong T Y. Research progress of cold sprayed metal matrix composite coatings and materials [J]. China Surf. Eng., 2020, 33(4): 51
17 王吉强, 崔新宇, 熊天英. 冷喷涂金属基复合涂层及材料研究进展 [J]. 中国表面工程, 2020, 33(4): 51
18 Wu H J, Li W B, Deng C M, et al. Key techniques of cold spray additive manufacturing [J]. China Surf. Eng., 2020, 33(4): 1
18 吴洪键, 李文波, 邓春明等. 冷喷涂增材制造关键技术 [J]. 中国表面工程, 2020, 33(4): 1
19 Sova A, Grigoriev S, Okunkova A, et al. Potential of cold gas dynamic spray as additive manufacturing technology [J]. Int. J. Adv. Manuf. Technol., 2013, 69: 2269
20 Assadi H, Kreye H, Gärtner F, et al. Cold spraying—A materials perspective [J]. Acta Mater., 2016, 116: 382
21 Lu J, Wang G H, Huang L Z, et al. State of the research of cold spraying anticorrosion coatings [J]. Surf. Technol., 2016, 45(9): 88
21 卢 静, 王光华, 黄乐之等. 冷喷涂制备防腐涂层研究现状 [J]. 表面技术, 2016, 45(9): 88
22 Zhang H B, Zhang J B, Shan A D, et al. Effects of gas temperature on bonding and deformation behavior of cold-sprayed Ni particles [J]. Acta Metall. Sin., 2007, 43: 823
22 章华兵, 张俊宝, 单爱党等. 气体温度对冷喷涂Ni粒子结合与变形行为的影响 [J]. 金属学报, 2007, 43: 823
23 Jodoin B, Raletz F, Vardelle M. Cold spray modeling and validation using an optical diagnostic method [J]. Surf. Coat. Technol., 2006, 200: 4424
24 Luo X T, Li Y J, Li C J. A comparison of cold spray deposition behavior between gas atomized and dendritic porous electrolytic Ni powders under the same spray conditions [J]. Mater. Lett., 2016, 163: 58
25 Li W Y, Li C J. Optimization of spray conditions in cold spraying based on numerical analysis of particle velocity [J]. Trans. Nonferrous Met. Soc. China, 2004, 14(spec.2): 43
26 Li W Y, Zhang C, Guo X P, et al. Effect of standoff distance on coating deposition characteristics in cold spraying [J]. Mater. Des., 2008, 29: 297
27 Yin S, Wang X F, Li W Y. Numerical investigations on the effect of nozzle outlet diameter on jet flow field and optimal standoff distance in cold spraying [J]. China Surf. Eng., 2013, 26(1): 74
27 殷 硕, 王晓放, 李文亚. 喷嘴出口直径对冷喷涂射流流场及基板最佳位置影响的数值分析 [J]. 中国表面工程, 2013, 26(1): 74
28 Assadi H, Gärtner F, Stoltenhoff T, et al. Bonding mechanism in cold gas spraying [J]. Acta Mater., 2003, 51: 4379
29 Schmidt T, Gärtner F, Assadi H, et al. Development of a generalized parameter window for cold spray deposition [J]. Acta Mater., 2006, 54: 729
30 Grujicic M, Zhao C L, Derosset W S, et al. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process [J]. Mater. Des., 2004, 25: 681
31 Bae G, Kang K, Na H, et al. Effect of particle size on the microstructure and properties of kinetic sprayed nickel coatings [J]. Surf. Coat. Technol., 2010, 204: 3326
32 Li W Y, Zhang D D, Huang C J, et al. Modelling of impact behaviour of cold spray particles: Review [J]. Surf. Eng., 2014, 30: 299
33 Li C J, Li W Y, Wang Y Y, et al. A theoretical model for prediction of deposition efficiency in cold spraying [J]. Thin Solid Films, 2005, 489: 79
34 Li C J, Li W Y, Liao H L. Examination of the critical velocity for deposition of particles in cold spraying [J]. J. Therm. Spray Technol., 2006, 15: 212
35 Raletz F, Vardelle M, Ezo'o G. Critical particle velocity under cold spray conditions [J]. Surf. Coat. Technol., 2006, 201: 1942
36 Hassani-Gangaraj M, Veysset D, Nelson K A, et al. In-situ observations of single micro-particle impact bonding [J]. Scr. Mater., 2018, 145: 9
37 Li W Y, Li C J, Wang H T, et al. About the critical velocity of cold spray particles [A]. The 11th National Welding Conference [C]. Shanghai: Chinese Mechanical Engineering Society, 2005: 3
37 李文亚, 李长久, 王洪涛等. 关于冷喷涂粒子临界速度 [A]. 第十一次全国焊接会议论文集(第1册) [C]. 上海: 中国机械工程学会, 2005: 3
38 Li W Y, Li C J, Wang Y Y, et al. Effect of parameters of cold sprayed Cu particles on its impacting behavior [J]. Acta Metall. Sin., 2005, 41: 282
38 李文亚, 李长久, 王豫跃等. 冷喷涂Cu粒子参量对其碰撞变形行为的影响 [J]. 金属学报, 2005, 41: 282
39 Wei Y K, Li Y J, Zhang Y, et al. Corrosion resistant nickel coating with strong adhesion on AZ31B magnesium alloy prepared by an in-situ shot-peening-assisted cold spray [J]. Corros. Sci., 2018, 138: 105
40 Gao Y R, Liu C M, Fu S L, et al. Electroless nickel plating on ZM6 (Mg-2.6Nd-0.6Zn-0.8Zr) magnesium alloy substrate [J]. Surf. Coat. Technol., 2010, 204: 3629
41 Sun S, Liu J G, Yan C W, et al. A novel process for electroless nickel plating on anodized magnesium alloy [J]. Appl. Surf. Sci., 2008, 254: 5016
42 Heshmati M, Seifzadeh D, Shoghi P, et al. Duplex Ni-Zn-Cu-P/Ni-P electroless coating on magnesium alloy via maleic acid pretreatment [J]. Surf. Coat. Technol., 2017, 328: 20
43 Rajabalizadeh Z, Seifzadeh D. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment [J]. Appl. Surf. Sci., 2017, 422: 696
44 Li W Y, Zhang C, Guo X P, et al. Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying [J]. Appl. Surf. Sci., 2007, 254: 517
45 Ajdelsztajn L, Jodoin B, Schoenung J M. Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying [J]. Surf. Coat. Technol., 2006, 201: 1166
46 Xiong Y M, Bae G, Xiong X, et al. The effects of successive impacts and cold welds on the deposition onset of cold spray coatings [J]. J. Therm. Spray Technol., 2010, 19: 575
47 Zhang H B, Zhang J B, Liang Y L, et al. Microstructures of cold-sprayed Ni coating [J]. Chin. J. Nonferrous Met., 2008, 18: 1421
47 章华兵, 张俊宝, 梁永立等. 冷喷涂Ni涂层的微观组织 [J]. 中国有色金属学报, 2008, 18: 1421
48 Borchers C, Gärtner F, Stoltenhoff T, et al. Microstructural bonding features of cold sprayed face centered cubic metals [J]. J. Appl. Phys., 2004, 96: 4288
49 Zou Y, Qin W, Irissou E, et al. Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: Electron backscatter diffraction characterization [J]. Scr. Mater., 2009, 61: 899
50 Grujicic M, Saylor J R, Beasley D E, et al. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process [J]. Appl. Surf. Sci., 2003, 219: 211
51 Li C J, Li W Y, Wang Y Y. Formation of metastable phases in cold-sprayed soft metallic deposit [J]. Surf. Coat. Technol., 2005, 198: 469
52 Bolesta A V, Fomin V M, Sharafutdinov M R, et al. Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles [J]. Nucl. Instrum. Methods Phys. Res., 2001, 470A: 249
53 Zhou X L, Su X Y, Cui H, et al. Simulation effect of cold-sprayed particlesproperties on their impacting behaviors [J]. Acta Metall. Sin., 2008, 44: 1286
53 周香林, 苏贤涌, 崔 华等. 颗粒材料特性对冷喷涂撞击行为影响的模拟研究 [J]. 金属学报, 2008, 44: 1286
54 Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Adiabatic shear instability is not necessary for adhesion in cold spray [J]. Acta Mater., 2018, 158: 430
55 Li W Y, Zhang C, Wang H T, et al. Significant influences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying [J]. Appl. Surf. Sci., 2006, 253: 3557
56 Li W Y, Li C J, Liao H L. Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings [J]. Appl. Surf. Sci., 2010, 256: 4953
57 Wu X K, Zhou X L, Wang J G, et al. Numerical investigation on energy balance and deposition behavior during cold spraying [J]. Acta Metall. Sin., 2010, 46: 385
57 巫湘坤, 周香林, 王建国等. 冷喷涂过程中能量变化及沉积行为的模拟研究 [J]. 金属学报, 2010, 46: 385
58 Nesterenko V F, Meyers M A, Lasalvia J C, et al. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum [J]. Mater. Sci. Eng., 1997, A229: 23
59 Wei Y K, Luo X T, Chu X, et al. Ni coatings for corrosion protection of Mg alloys prepared by an in-situ micro-forging assisted cold spray: Effect of powder feedstock characteristics [J]. Corros. Sci., 2021, 184: 109397
60 Bae G, Jang J I, Lee C. Correlation of particle impact conditions with bonding, nanocrystal formation and mechanical properties in kinetic sprayed nickel [J]. Acta Mater., 2012, 60: 3524
61 Xie Y C, Planche M P, Raoelison R, et al. Investigation on the influence of particle preheating temperature on bonding of cold-sprayed nickel coatings [J]. Surf. Coat. Technol., 2017, 318: 99
62 Li W Y, Cao C C, Wang G Q, et al. ‘Cold spray +’ as a new hybrid additive manufacturing technology: A literature review [J]. Sci. Technol. Weld. Joining, 2019, 24: 420
63 Luo X T, Li Y J, Li C X, et al. Effect of spray conditions on deposition behavior and microstructure of cold sprayed Ni coatings sprayed with a porous electrolytic Ni powder [J]. Surf. Coat. Technol., 2016, 289: 85
64 Xie Y C, Chen C Y, Planche M P, et al. Effect of spray angle on Ni particle deposition behaviour in cold spray [J]. Surf. Eng., 2018, 34: 352
65 Yin S, Wang X F, Li W Y, et al. Deformation behavior of the oxide film on the surface of cold sprayed powder particle [J]. Appl. Surf. Sci., 2012, 259: 294
66 Yin S, Xie Y C, Suo X K, et al. Interfacial bonding features of Ni coating on Al substrate with different surface pretreatments in cold spray [J]. Mater. Lett., 2015, 138: 143
67 Yin S, Suo X K, Xie Y C, et al. Effect of substrate temperature on interfacial bonding for cold spray of Ni onto Cu [J]. J. Mater. Sci., 2015, 50: 7448
68 Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: I—The deformed state [J]. Acta Mater., 2004, 52: 3239
69 Zou Y, Rezaeian A, Szpunar J A, et al. Structural transformation and mechanical properties of cold sprayed nickel coatings after annealing [J]. MRS Online Proc. Lib., 2008, 1151: 3
70 Zhang H B, Zhang J B, Liang Y L, et al. Effect of annealing treatment on microstructures and mechanical properties of cold- sprayed Ni coating [J]. Baosteel Technol., 2009, (1): 46
70 章华兵, 张俊宝, 梁永立等. 退火处理对冷喷涂Ni涂层组织与力学性能的影响 [J]. 宝钢技术, 2009, (1): 46
71 Koivuluoto H, Vuoristo P. Structural analysis of cold-sprayed nickel-based metallic and metallic-ceramic coatings [J]. J. Therm. Spray Technol., 2010, 19: 975
72 Lupoi R, Sparkes M, Cockburn A, et al. High speed titanium coatings by supersonic laser deposition [J]. Mater. Lett., 2011, 65: 3205
73 Marrocco T, Hussain T, McCartney D G, et al. Corrosion performance of laser posttreated cold sprayed titanium coatings [J]. J. Therm. Spray Technol., 2011, 20: 909
74 Li Z M, Yang X P, Zhang J B, et al. Interfacial mechanical behavior and electrochemical corrosion characteristics of cold-sprayed and hot-rolled titanium/stainless-steel couples [J]. Adv. Eng. Mater., 2016, 18: 1240
75 Shi Z C, Zhang X Y, Tang Z H, et al. Properties of cold spray Zn/Ni coatings on 300M Steel [J]. Surf. Technol., 2016, 45(6): 100
75 石仲川, 张晓云, 汤智慧等. 300M钢表面冷喷涂锌镍复合涂层性能研究 [J]. 表面技术, 2016, 45(6): 100
76 Liu D X, Shi Z C, Zhang X Y, et al. Structure and anti-corrosion properties of cold sprayed Al coatings on ZM6 magnesium alloy [J]. J. Mater. Eng., 2012, (12): 50
76 刘德鑫, 石仲川, 张晓云等. ZM6镁合金冷喷涂Al涂层结构与耐蚀性研究 [J]. 材料工程, 2012, (12): 50
77 Kalsi S B S, Sidhu T S, Singh H. Chlorine based hot corrosion study of cold sprayed NiCrAlY coating [J]. Surf. Eng., 2014, 30: 422
78 Kaur N, Kumar M, Sharma S K, et al. Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels [J]. Appl. Surf. Sci., 2015, 328: 13
79 Kumar M, Singh H, Singh N, et al. Erosion-corrosion behavior of cold-spray nanostructured Ni-20Cr coatings in actual boiler environment [J]. Wear, 2015, 332-333: 1035
80 Singh H, Sidhu T S, Kalsi S B S, et al. Hot corrosion behavior of cold-sprayed Ni-50Cr coating in an incinerator environment at 900oC [J]. J. Therm. Spray Technol., 2015, 24: 570
81 Song B, Voisey K T, Hussain T. High temperature chlorine-induced corrosion of Ni50Cr coating: HVOLF, HVOGF, cold spray and laser cladding [J]. Surf. Coat. Technol., 2018, 337: 357
82 Ma W H, Xie Y C, Chen C Y, et al. Microstructural and mechanical properties of high-performance Inconel 718 alloy by cold spraying [J]. J. Alloys Compd., 2019, 792: 456
83 Poza P, Múnez C J, Garrido-Maneiro M A, et al. Mechanical properties of Inconel 625 cold-sprayed coatings after laser remelting. Depth sensing indentation analysis [J]. Surf. Coat. Technol., 2014, 243: 51
84 Podrabinnik P A, Shishkovsky I V. Laser post annealing of cold-sprayed Al-Ni composite coatings for green energy tasks [J]. Mater. Sci. Forum, 2015, 834: 113
85 Cavaliere P, Silvello A, Cinca N, et al. Microstructural and fatigue behavior of cold sprayed Ni-based superalloys coatings [J]. Surf. Coat. Technol., 2017, 324: 390
86 Tria S, Elkedim O, Li W Y, et al. Ball milled Ni-Ti powder deposited by cold spraying [J]. J. Alloys Compd., 2009, 483: 334
87 Xie X L, Chen C Y, Xie Y C, et al. Comparative investigation of microstructure and properties of Ni-coated FeSiAl soft magnetic composite coatings produced by cold spraying and HVOF [J]. Surf. Coat. Technol., 2019, 371: 224
88 Suo X K, Yang G J, Li C J. Preparation of Ni-based alloy diamond composite coatings by cold spray [J]. Mater. Res. Appl., 2009, 3: 32
88 所新坤, 杨冠军, 李长久. 镍基金刚石复合涂层的冷喷涂制备 [J]. 材料研究与应用, 2009, 3: 32
89 Koivuluoto H, Milanti A, Bolelli G, et al. High-pressure cold-sprayed Ni and Ni-Cu coatings: Improved structures and corrosion properties [J]. J. Therm. Spray Technol., 2014, 23: 98
90 Ning X J, Wang Q S, Yang J Z, et al. Cold-sprayed Ni-cBN coating and its friction and wear properties [J]. New Technol. New Process, 2018, (4): 11
90 宁先进, 王全胜, 杨晋智等. 冷喷涂Ni-cBN防钛火涂层及其摩擦磨损性能 [J]. 新技术新工艺, 2018, (4): 11
91 Smid I, Segall A E, Walia P, et al. Cold-sprayed Ni-hBN self-lubricating coatings [J]. Tribol. Trans., 2012, 55: 599
92 Cavaliere P, Silvello A. Mechanical and microstructural behavior of cold-sprayed titanium- and nickel-based coatings [J]. J. Therm. Spray Technol., 2015, 24: 1506
93 Li W Y, Zhang C, Liao H L, et al. Characterizations of cold-sprayed nickel-alumina composite coating with relatively large nickel-coated alumina powder [J]. Surf. Coat. Technol., 2008, 202: 4855
94 Singh H, Sidhu T S, Karthikeyan J, et al. Development and characterization of Cr3C2-NiCr coated superalloy by novel cold spray process [J]. Mater. Manuf. Processes, 2016, 31: 1476
95 Luo X T, Yang G J, Li C J. Multiple strengthening mechanisms of cold-sprayed cBNp/NiCrAl composite coating [J]. Surf. Coat. Technol., 2011, 205: 4808
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[3] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[4] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[5] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[11] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[12] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[13] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[14] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[15] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.