Cr添加对孪生诱发塑性钢腐蚀行为的影响
1
2
Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel
1
2
通讯作者: 韩福生,fshan@issp.ac.cn,主要从事高强韧高吸能金属材料设计、组织与性能调控机制与方法研究
责任编辑: 肖素红
收稿日期: 2021-09-28 修回日期: 2022-01-26
基金资助: |
|
Corresponding authors: HAN Fusheng, professor, Tel:
Received: 2021-09-28 Revised: 2022-01-26
Fund supported: |
|
作者简介 About authors
司永礼,男,1992年生,博士生
通过动电位极化曲线、电化学阻抗谱(EIS)测试和X射线光电子能谱(XPS)分析等研究了Cr添加对Fe-25Mn-xCr-0.3C (x = 0、3、6、9、12,质量分数,%)孪生诱发塑性(TWIP)钢腐蚀行为的影响。结果表明,TWIP钢基体中Cr含量增加导致腐蚀电位显著增加和腐蚀电流密度明显降低。耐腐蚀性能改善还通过Nyquist图中电荷转移电阻随着Cr含量的增加而增加得到证实。XPS结果表明,准钝化膜由FeO、Fe2O3、FeOOH、MnO、MnO2、Cr2O3和Cr(OH)3等组成,并且随着Cr含量增加,Cr氧化物在最外层氧化物中逐渐富集,同时Fe氧化物和Mn氧化物逐渐减少。正是这种保护性Cr氧化膜提高了TWIP钢的耐腐蚀性能。
关键词:
High-Mn austenitic Fe-Mn-C twinning-induced plasticity (TWIP) steels are prospective candidates in many industrial fields, owing to their excellent mechanical properties. However, these steels show poor corrosion resistance, which affects their performance and prevents their applications particularly in aqueous environment. In this study, an effective way to improve the corrosion resistant property of TWIP steels was described by understanding the corrosion behavior of TWIP steel that was alloyed with Cr. A series of Fe-25Mn-xCr-0.3C (x = 0, 3, 6, 9, and 12, mass fraction, %) TWIP steels were prepared in a vacuum arc melting furnace using high purity raw materials (≥ 99.8%). Thereafter, the resulting steels were solution treated at 1200oC for 2 h under an argon atmosphere. The effect of Cr addition on the corrosion behavior of the prepared TWIP steels was investigated using various analytical techniques including XRD, potentiodynamic polarization, electrochemical impedance spectroscopy, and XPS. XRD results showed that the TWIP steels with Cr content that ranged from 3% to 12% retained their single austenite phase. Moreover, increasing the concentration of Cr in the alloys substantially increased and decreased the corrosion potential and corrosion current density, respectively. These resulted in an improvement in the corrosion resistant property of the alloys, which was verified by the increase in the charge transfer resistance found in the Nyquist plots. Meanwhile, XPS results revealed that the prepared quasi-passive oxide film was composed of FeO, Fe2O3, FeOOH, MnO, MnO2, Cr2O3, and Cr(OH)3. Furthermore, these results showed the progressive enrichment of Cr oxides and decrease of both Fe and Mn oxides in the outermost oxide as the Cr content was increased. The improved corrosion resistance of the prepared TWIP steels was caused by the protective Cr oxide film.
Keywords:
本文引用格式
司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生.
SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng.
高锰奥氏体Fe-Mn-C孪生诱发塑性(TWIP)钢由于具有低密度、高强度和高延展性等优异的力学性能,在过去十余年越来越受到汽车和钢铁行业的关注[1~7]。这些特性使TWIP钢在许多工业领域具有潜在的应用前景,诸如,汽车中的轻质结构、高速列车中的冲击保护结构等[8~12]。尽管TWIP钢具有出色的强度和延展性,但其耐腐蚀性能较差,尤其是在水性溶液介质中更是如此[3,13~16],这极大地影响了TWIP钢的性能、限制了TWIP钢的应用。因此,提高耐腐蚀性能一直是TWIP钢的重要的研究热点之一。迄今为止,已有一些关于TWIP钢腐蚀机理和耐腐蚀技术的报道,如晶界工程[17,18]、热浸镀锌/铝[19,20]、Cr合金化或降低C含量[14,21~24]等。
考虑到在TWIP钢中添加较高含量的C不仅不利于延展性,而且会导致对耐腐蚀性能有害的碳化物析出[26]。因此,本工作中TWIP钢的C含量控制在0.3%左右。Cr是提高TWIP钢耐腐蚀性能的至关重要的合金元素。众所周知,Cr的电极电位比Mn的更正,其中,Cr的标准还原电位为
1 实验方法
1.1 样品制备
在真空电弧熔炼炉中使用高纯Fe (99.95%)、Mn (99.8%)、Cr (99.95%)和C (99.999%)制备Fe-25Mn-xCr-0.3C (x = 0、3、6、9、12) TWIP钢。在Ar气氛保护下,铸锭至少熔化3次以使合金成分更均匀,最后在铜模中浇铸成纽扣状样品。采用OBLF QSN750-Ⅱ直读光谱仪对试样进行成分分析,主要成分见表1。样品在Ar气氛保护下1200℃固溶2 h,然后水淬。
表1 孪生诱发塑性(TWIP)钢样品主要化学成分 (mass fraction / %)
Table 1
Sample | C | Mn | Cr | Si | Ni | Mo | Ti | Fe |
---|---|---|---|---|---|---|---|---|
0Cr | 0.304 | 24.49 | 0.02 | 0.001 | 0.018 | 0.001 | 0.006 | Bal. |
3Cr | 0.294 | 24.39 | 3.07 | 0.001 | 0.020 | 0.001 | 0.006 | Bal. |
6Cr | 0.299 | 24.22 | 5.93 | 0.001 | 0.018 | 0.001 | 0.005 | Bal. |
9Cr | 0.302 | 24.46 | 8.37 | 0.001 | 0.020 | 0.001 | 0.006 | Bal. |
12Cr | 0.303 | 24.83 | 11.33 | 0.001 | 0.018 | 0.001 | 0.006 | Bal. |
1.2 组织表征
利用X'Pert Pro MPD X射线衍射仪(XRD)使用CuKα 射线在室温下以0.03349°的步长、20°~100°的扫描角分析样品物相组成。样品经研磨抛光后,使用100 mL C2H5OH、3 g苦味酸和5 mL HCl的混合溶液作为金相腐蚀剂腐蚀金相。使用AXIO光学显微镜(OM)和SU8020场发射扫描电子显微镜(FE-SEM)观察恒电位极化测试后样品的表面腐蚀形貌。
1.3 电化学测试
电化学测试使用三电极体系,在500 mL含3.5%NaCl水溶液中进行。电解质溶液使用试剂级NaCl和去离子水制备。TWIP钢样品用作工作电极,工作电极面积为0.75 cm2,Pt丝作为对电极,饱和甘汞电极(SCE)用作参比电极。从纽扣状样品的中心切下直径为15 mm、厚度为3 mm的TWIP钢样品,用砂纸打磨至3000号后,装入电化学夹具中进行相关电化学测试。
工作电极在NaCl溶液中浸泡0.5 h达到稳定后,在开路电位-0.5~+1.25 V、扫描速率1.667 mV/s下进行动电位极化测试。每种样品的极化测试至少重复3次,直到达到稳定值。
电化学阻抗谱(EIS)在100 kHz~0.05 Hz的频率范围内,以5 mV的正弦波振幅频率测量。EIS数据通过ZSimpWin软件进行拟合和分析。
1.4 X射线光电子能谱
在-0.1 V (vs SCE)电位下恒电位极化60 min后,利用Thermo ESCALAB 250Xi X射线光电子能谱仪(XPS)分析样品表层的腐蚀产物。XPS测量使用AlKα X射线源(150 W、30 eV、能量hυ = 1486.6 eV)。腐蚀产物和准保护膜的高分辨能谱(Fe2p、Mn2p、Cr2p和O1s)由XPSPEAK 4.1软件和在线数据库[28]处理。根据参照峰C1s峰结合能(284.6 eV)进行校准。
2 实验结果与讨论
2.1 相组成
图1显示了TWIP钢样品的XRD谱。除了γ奥氏体峰外,样品中没有发现其他物相峰,表明即使在Cr含量高达12%时,TWIP钢仍具有稳定的奥氏体组织。
图1
图1
不同Cr含量TWIP钢样品的XRD谱
Fig.1
XRD spectra of TWIP steel samples with different Cr contents
12Cr样品显微组织的OM像如图2所示。对所有样品(0Cr~12Cr)的金相组织进行了观察,均未发现除奥氏体以外的其他组织。Cr是铁素体形成元素,高锰奥氏体TWIP钢中随着Cr元素添加量的增加可能导致基体组织中产生除奥氏体以外的其他组织。本工作表明Cr含量高达12%时,Fe-Mn-Cr-C钢仍具有稳定的单相奥氏体组织。
图2
2.2 动电位极化响应
不同Cr含量的TWIP钢样品在3.5%NaCl溶液中的动电位极化曲线如图3所示。对应的Ecorr和腐蚀电流密度(icorr)数据列于表2中。从表2中可见,0Cr~12Cr样品的Ecorr分别为-818、-487、-468、-261和-223 mV,Ecorr随着Cr含量的增加呈现出正移的趋势。此外,有趣的是,随着Cr含量的增加,Ecorr的增加近于阶梯状,而不是均匀分布的。3Cr/6Cr试样和9Cr/12Cr试样可以看作是两组,每组的Ecorr接近,即每组具有相似的耐腐蚀性能。从表2还可以看出,随着Cr含量从0增加到12%,icorr从1.5810 × 10-6 A/cm2降低到0.0764 × 10-6 A/cm2,进一步证明了Cr添加对提升TWIP钢耐腐蚀性能的有效性。
图3
图3
不同Cr含量TWIP钢样品的动电位极化曲线
Fig.3
Potentiodynamic polarization curves of TWIP steel samples with different Cr contents (i—current density)
表2 基于动电位极化曲线的特征电化学参数
Table 2
Sample | Ecorr / mV | icorr / (10-6 A·cm-2) |
---|---|---|
0Cr | -818 | 1.5810 |
3Cr | -487 | 0.4701 |
6Cr | -468 | 0.4189 |
9Cr | -261 | 0.2244 |
12Cr | -223 | 0.0764 |
2.3 EIS表征活性溶解动力学
图4
图4
室温下TWIP钢样品在3.5%NaCl溶液中的Nyquist图
Fig.4
Nyquist plots of TWIP steel samples in 3.5%NaCl solution at room temperature (a) and locally enlarged Nyquist spectra of 0Cr, 3Cr, and 6Cr samples in Fig.4a (b) (Z'—real part of the im-pedance, Z''—imaginary part of the impedance)
式中,ω是角频率,x (x > 0)是积分变量;Z′(ω)和Z″(ω)分别是阻抗的实部和虚部,Z′(0)和Z′(∞)是频率为0和∞时阻抗的实部。方程(1)和(2)将虚部转换为实部,方程(3) 将实部转换为虚部。比较实验阻抗图和K-K转换计算阻抗图,可以评估EIS测量的可靠性。
如图4所示,Nyquist曲线在高频区呈现出类似弧形的趋势。众所周知,容抗弧与原子溶解反应有关,并且容抗弧的直径取决于电荷转移电阻(Rct)[31,32]。从图4可以看出,尽管5种样品的Cr含量不同,但其Nyquist图的形状相似。在100 kHz~0.05 Hz的频率范围内,样品的EIS由压扁的半圆组成。随着Cr添加量从0增加到12%,高频区Nyquist图的半圆逐渐增大。Rct与腐蚀速率成反比,随着Cr含量的增加而显著增加。一般来说,容抗弧的直径越大,或者说Rct越大,材料的抗腐蚀性能越好[33]。样品容抗弧直径随着Cr含量的增加而增加的事实表明,高Cr添加量确实可以有效提高TWIP钢的耐腐蚀性能。
图5显示了室温下TWIP钢样品在3.5%NaCl溶液中的Bode图。在Bode相位角-频率图中,随着频率增加,相位角先升高直至达到最大值,然后再降低,表现出典型的容抗行为。最大相位角出现在60°~75°之间,随Cr含量变化而变化,但均小于90°。在低频区域,0Cr~12Cr样品相位角均有所下降,0.05 Hz附近随着基体中Cr含量增加,相位角增大,表明样品的腐蚀速率下降。9Cr/12Cr、3Cr/6Cr每组样品均具有相近的相位角,表明其有相近的腐蚀速率。此外,在高频区域,9Cr和12Cr样品的相位角重合,表明其具有相近的腐蚀速率。
图5
图5
室温下TWIP钢样品在3.5%NaCl溶液中的Bode图
Fig.5
Bode plots of TWIP steel samples in 3.5%NaCl solution at room temperature (|Z|—magnitude of the impedance)
图6
图6
0Cr样品在3.5%NaCl溶液中的实验和K-K转换计算的阻抗比较
Fig.6
Comparisons of experimental impedance and calculated impedance using K-K transforms for 0Cr sample in 3.5%NaCl solution
(a) Z' (b) -Z"
图7
图7
12Cr样品在3.5%NaCl溶液中的实验和K-K转换计算的阻抗比较
Fig.7
Comparisons of experimental impedance and calculated impedance using K-K transforms for 12Cr sample in 3.5%NaCl solution
(a) Z' (b) -Z"
为了对EIS数据进行拟合,引入了如图8所示的等效电路(EEC)模型。在该模型中,常相位角元件(CPE)代表双电层电容。CPE与Rct并联后与Rs串联。Rs是参比电极和工作电极之间的欧姆电阻。由CPE和Rct组成的次回路可能是由腐蚀过程产生的。CPE常用于分析腐蚀电极的非理想电容,其阻抗(ZCPE)由下式给出:
图8
图8
用于阻抗拟合的等效电路
Fig.8
Equivalent electrical circuit used to fit the impedance data of samples (CPE—constant phase angle element, Rs—solution resistance, Rct—charge transfer resistance)
所提出EEC模型的总阻抗由以下传递函数给出:
表3 基于EIS数据和图8模型的样品拟合结果
Table 3
Sample | Rs | Rs error | CPE | Rct | Rct error | χ2 | |||
---|---|---|---|---|---|---|---|---|---|
Ω·cm2 | % | Y0 / (10-4 S·cm-2·s n ) | Y0 error / % | n | n error / % | Ω·cm2 | % | 10-3 | |
0Cr | 12.32 | 1.022 | 11.510 | 2.578 | 0.9432 | 0.860 | 507 | 2.563 | 4.470 |
3Cr | 12.04 | 0.489 | 6.031 | 1.107 | 0.8240 | 0.337 | 1099 | 1.146 | 0.799 |
6Cr | 10.94 | 0.569 | 2.538 | 1.207 | 0.7880 | 0.308 | 1585 | 0.982 | 0.818 |
9Cr | 13.22 | 1.105 | 0.961 | 1.773 | 0.8466 | 0.428 | 8570 | 2.265 | 3.080 |
12Cr | 10.70 | 0.514 | 1.028 | 0.728 | 0.8639 | 0.179 | 14490 | 1.349 | 0.682 |
2.4 腐蚀形貌
图9
图9
恒电位极化测试后TWIP钢样品表面形貌的OM像和SEM像
Fig.9
OM (a1-e1) and SEM (a2-e2) images showing the surface morphologies after the potentiostatic polarization tests for 0Cr (a1, a2), 3Cr (b1, b2), 6Cr (c1, c2), 9Cr (d1, d2), and 12Cr (e1, e2) samples
2.5 腐蚀产物
0Cr~12Cr样品准钝化膜的高分辨XPS (Fe2p3/2、Mn2p3/2和Cr2p3/2)见图10和11。以图11a的9Cr样品为代表,Fe2p3/2的XPS显示了4个峰,分别是706.8 eV处的金属Fe (Fe-met)、709.9 eV处的FeO、710.7 eV处的Fe2O3和713.5 eV处的FeOOH。Mn2p3/2的XPS显示3个峰,分别为638.78 eV处的金属Mn (Mn-met)、640.7 eV处的MnO和641.1 eV处的MnO2。Cr2p3/2的XPS也显示了3个峰,分别为574.0 eV处金属Cr (Cr-met)、576.0 eV处的Cr2O3和577.0 eV处的Cr(OH)3。0Cr和3Cr样品(图10a和b)的XPS中只观察到了金属氧化物峰,而6Cr样品(图10c)的XPS中出现Fe-met、Mn-met和Cr-met 3个金属峰,纯金属峰的出现说明6Cr样品的耐腐蚀性能有所提高。
图10
图10
0Cr、3Cr和6Cr样品的XPS
Fig.10
XPS of 0Cr (a), 3Cr (b), and 6Cr (c) TWIP steel samples
图11
基于XPS结果,样品的阳离子分数Fecat、Mncat和Crcat如图12所示。阳离子分数定义[15]如下:以Fecat为例,Fecat = Feion / (Feion + Mnion + Crion),其中Feion、Mnion和Crion分别是Fe、Mn和Cr金属离子的原子分数。Mncat和Crcat以此类推。结果表明,Fe是氧化物层的主要组成成分,但随着基体中Cr含量的增加,Fe氧化物含量明显降低。Mn氧化物的比例也随着Cr含量的增加而减少。应该注意的是,随着Cr含量的增加,Cr的氧化物质增加,这将对TWIP钢的耐腐蚀性能提供不同的贡献。此外,与其他铁基合金一样,Cr的一个重要作用是在晶粒上形成钝化膜以防止高锰TWIP钢基体腐蚀[23,37],因为Mn是一种极易腐蚀的元素。上述结果与动电位极化曲线和EIS结果一致。
图12
图12
基于XPS结果的样品表面膜的阳离子分数
Fig.12
Cationic fractions in surface film of samples based on the XPS results
3 结论
(1) TWIP钢在Cr含量为3%~12%时仍具有稳定的单一奥氏体相。
(2) 随着Cr添加量的增加,腐蚀电位和电荷转移电阻增加,腐蚀电流密度降低。这表明Cr添加可以提高TWIP钢的耐腐蚀性能。
(3) 在晶粒上形成几种Cr氧化物以及准钝化膜有助于提高TWIP钢的耐腐蚀性能。
参考文献
Brittle intermetallic compound makes ultrastrong low-density steel with large ductility
[J].
Twinning-induced plasticity (TWIP) steels
[J].
Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review
[J].
On the relationship between the twin internal structure and the work-hardening rate of TWIP steels
[J].
Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments
[J].
Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels
[J].
Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels
[J].
The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel
[J].
Hot ductility of high alloy Fe-Mn-C austenite TWIP steel
[J].
Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels
[J].
Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels
[J].
Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys
[J].
The cavitation erosion of Fe-Mn-Al alloys
[J].
Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C in 3.5%NaCl solution
[J].
Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution
[J].Corrosion of TWIP austenitic steels Fe-Mn-3AI-3Si was studied using polarization curves, EIS tests and XPS. Results indicated that increased concentrations of Mn were detrimental to its corrosion resistance. XPS study revealed that pseudo-protective oxide layer was composed of FeO, Fe2O3, FeOOH, Al2O3, MnO and MnO2. Enrichment of Mn oxides in the outermost oxide layer was found as Mn increased in the TWIP steel bulk along with a decrease in Fe oxides. The increased corrosion susceptibility exhibited with the concentration of Mn in the alloys was associated with the greater contribution of the less protective Mn oxide in the surface film.
Effect of Mn content on corrosion characteristics of lean Mn TWIP steel
[J].
Effect of grain and grain boundary features on anti-corrosion ability of a high manganese austenitic TWIP steel
[J].
晶粒及晶界特征对高锰奥氏体TWIP钢抗腐蚀能力的影响
[J].以一种高锰奥氏体孪晶诱发塑性(TWIP)钢为实验材料, 采用700~1000 ℃保温20 min及800 ℃保温10~30 min的退火工艺获得了不同晶粒尺寸分布及晶界特征分布的再结晶组织, 结合EBSD技术及动电位极化曲线测试, 研究了晶粒度、晶粒均匀性及晶界特征分布对该钢抗腐蚀能力的影响. 结果表明, 该高锰奥氏体TWIP钢的抗腐蚀能力受组织中的晶粒度及重位点阵(CSL)晶界分布比例的影响, 二者的作用在再结晶的组织中因组织的均匀性不同而表现出明显差异. 当再结晶过程刚刚结束, 晶粒组织尚不均匀且未进入晶粒长大阶段时, 平均晶粒尺寸对抗腐蚀能力的影响占主导地位. 随着平均晶粒尺寸的增大, 该TWIP钢的抗腐蚀能力下降. 而当再结晶晶粒充分长大且晶粒尺寸分布均匀, CSL晶界所占的比例对其抗腐蚀能力的影响尤为显著. 随着CSL晶界所占晶界比例的提高, 该TWIP钢的抗腐蚀能力增加.
Improvement of the anti-corrosion property of twinning-induced plasticity steel by twin-induced grain boundary engineering
[J].
Improvement of corrosion resistance of twinning-induced plasticity steel by hot-dipping aluminum with subsequent thermal diffusion treatment
[J].Fe-Al intermetallic layers were formed on the surface of twinning induced plasticity (TWIP) steel by hot-dipping aluminum (HDA) and subsequent thermal diffusion treatment (TDT). It was shown that the coating layer was composed of Al, FeAl3 and Fe2Al5 phases in the hot-dip state while only Fe3Al phase retained after subsequent TDT. It was found that, the corrosion resistance of TWIP steel had been significantly improved with a shift of 224 mV in the E-corr towards anodic direction and the j(corr) reduced from 26.1 mu A/cm(2) to 2.70 mu A/cm(2). Fe-Al intermetallics could lower the corrosion rate because the Al2O3 film formed during stable soak stage was slightly stable due to the higher aluminum content than matrix steel. (C) 2019 Elsevier B.V.
Surface characteristics and corrosion resistance of spangle on hot-dip galvanized coating
[J].
Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels
[J].By using scanning electron microscopy (SEM) equipped with electron back-scattered diffraction (EBSD) system, transmission electron microscopy (TEM) and CorrTest4 electrochemical workstation, effects of chromium content (1.35wt% - 3.95 wt%) on the mechanical properties and anti-corrosion behaviours of high manganese Fe-Mn-C-Al-Cr-N twinning-induced plasticity (TWIP) steels were studied. The results show that Cr content has an obvious influence on the mechanical properties and fracture behaviors of the high manganese TWIP steels. The yield and ultimate tensile strengths of the steel sheets were improved with increasing Cr content while the elongation was reduced. In addition, with the increase of Cr content, the fracture mode changed from ductile fracture pattern with coarse dimples and tear ridges (Cr content ≤ 2.35%) to intergranular fracture (when Cr content is 3.95%). Furthermore, Cr content has a tremendous effect on anti-corrosion behaviors of the high manganese TWIP steels. The increase of Cr content enhanced the corrosion resistance of the annealed steel sheets by improving the proportion of low-angle boundary.
NaCl-induced hot corrosion of Fe-Mn-Al-C alloys
[J].
Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment
[J].
Corrosion behavior of 6.5%Cr steel in high temperature and high pressure CO2 environment
[J].
65%Cr钢在高温高压CO2环境下的腐蚀行为研究
[J].
Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23wt%Cr-based alloys
[J].
Schaeffler diagram for high Mn steels
[J].
Reevaluation of the Fe-Mn phase diagram
[J].
A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function
[J].
Reflections on the history of electrochemical impedance spectroscopy
[J].
Effects of Mn on the localized corrosion behavior of Fe-18Cr alloys
[J].
Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4
[J].
Effects of nanocrystallization on the corrosion behavior of 309 stainless steel
[J].
Assessment of carbon steel microbiologically induced corrosion by electrical impedance spectroscopy
[J].
Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides
[J].
Long-term behaviour of AISI 304L passive layer in chloride containing medium
[J].
A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology
[J].In this work, we studied the effect of Cr element on the corrosion resistance evolution of weathering steel based on corrosion big data technology. It suggested that corrosion big data technology is suitable for evaluation of the effect of microalloying Cr element on the corrosion evolution behavior of weathering steel. New understandings prove that the effect of Cr on the corrosion process is dynamic rather than static, the processes is affected by both of the environmental factors and the electrochemical or chemical reactions in the rust layer. Besides, Cr element has both beneficial effect and detrimental effect on the corrosion resistance of weathering steel. The beneficial effect is that the general corrosion resistance of Cr-additional steel is better than that of Cr-free steel, while the detrimental effect is that localized corrosion is intensified as the increase of Cr content in the Cr-additional steel.
/
〈 |
|
〉 |
