Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1153-1162    DOI: 10.11900/0412.1961.2014.00113
  本期目录 | 过刊浏览 |
1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为
赵征志1,2, 佟婷婷1,2, 赵爱民1,2, 何青1,2, 董瑞1,2, 赵复庆1,2
1 北京科技大学冶金工程研究院, 北京 100083
2 北京科技大学现代交通先进金属材料与加工技术北京实验室, 北京 100083
MICROSTRUCTURE, MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF 1300 MPa GRADE 0.14C-2.72Mn-1.3Si STEEL
ZHAO Zhengzhi1,2, TONG Tingting1,2, ZHAO Aimin1,2, HE Qing1,2, DONG Rui1,2, ZHAO Fuqing1,2
1 Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2 Beijing Laboratory of Modern Traffic Metal Materials and Processing Technology, University of Science and Technology Beijing, Beijing 100083
引用本文:

赵征志, 佟婷婷, 赵爱民, 何青, 董瑞, 赵复庆. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J]. 金属学报, 2014, 50(10): 1153-1162.
Zhengzhi ZHAO, Tingting TONG, Aimin ZHAO, Qing HE, Rui DONG, Fuqing ZHAO. MICROSTRUCTURE, MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF 1300 MPa GRADE 0.14C-2.72Mn-1.3Si STEEL[J]. Acta Metall Sin, 2014, 50(10): 1153-1162.

全文: PDF(5850 KB)   HTML
摘要: 

在连续退火试验机上, 对一种Mn含量介于中锰和低锰含量之间的C-Si-Mn系(0.14C-2.72Mn-1.3Si, 质量分数, %)超高强钢进行处理, 获得了具有铁素体、淬火马氏体、回火马氏体以及一定量残余奥氏体的多相组织. 利用膨胀仪, SEM, TEM, EBSD和XRD等对实验钢在不同热处理工艺下的微观组织进行了表征. 结果表明, 800 ℃退火实验钢获得最佳综合力学性能, 屈服强度为672 MPa, 抗拉强度为1333 MPa, 总伸长率为13%. 这主要是800 ℃退火钢精细的组织、合适的相比例以及一定量残余奥氏体共同作用的结果. 对实验钢加工硬化行为进行了深入分析, 讨论了实验钢瞬时加工硬化指数n的变化, 采用修正的C-J方法对实验钢多阶段加工硬化行为进行了分析, 探讨了马氏体结构参数fM/dM-->(fM为马氏体体积分数, dM为马氏体等效直径)和铁素体体积分数等对加工硬化的影响. 结果表明, 实验钢颈缩前随真应变增加n快速增加后减小, 但不同温度退火实验钢n减小趋势不同; 由于不同温度退火实验钢马氏体体积分数不同, 经修正后的C-J法分析得到了2阶段和3阶段的加工硬化行为; 铁素体体积分数对马氏体与铁素体共同塑性变形的应变范围△e有显著影响, 低温时共同变形范围小, 高温时范围逐渐增大, 过高温度时可能又减小. 综上, 实验钢高的初始加工硬化率源于各相的配比、形貌和分布等, 是各组织协调配合和各因素共同作用的结果, 有利于提高实验钢的强度和塑韧性.

关键词 多相组织残余奥氏体加工硬化行为均匀延伸修正C-J分析方法    
Abstract

Multiphase microstructure which contains ferrite, lath martensite, tempered martensite and a specific proportion of retained austenite with chemical composition of Mn between low Mn and medium Mn (0.14C-2.72Mn-1.3Si, mass fraction, %) belong to C-Si-Mn series was produced using continuous annealing simulator. By means of dilatometric simulation, SEM, TEM, EBSD and XRD, microstructures of the steels in different heat treatments were characterized. The results illustrate that the tested steel sheet gained good comprehensive properties with yield strength of 672 MPa, tensile strength up to 1333 MPa, total elongation A50 of 13% after annealing at 800 ℃, which can be explained by the refined microstructure, appropriate proportion of phases and a specific proportion of retained austenite. This work has deeply analyzed the work hardening behavior, discussed the change of instantaneous work hardening rate n. The multi-stage work hardening behavior was studied by modified C-J analysis, and explored the influence of ( is the volume fraction of martensite, is the equivalent diameter of martensite) and fraction of ferrite on it. The results show that n increases with the rise of true strain and then decreases, but has a different feature in the decrease for the different tested steels; the multi-stage work hardening behavior studied by modified C-J analysis shows 2 or 3 stages because of the different martensite volume fraction. The strain scope of combined action of ferrite and martensite △e is affected by the volume fraction of ferrite: △e is small when the temperature is low, and then △e is large when temperature increases, while the △e maybe small when temperature continue to rise. Above all, the high instantaneous work hardening rate which is helpful for the improvement of strength, plasticity and toughness can be attributed to the proportion, morphology and distribution of ferrite and martensite, which is also the consequence of coordination and combination action of each factor.

Key wordsmultiphase microstructure    retained austenite    work hardening behavior    uniform elongation    modified C-J analysis
    
ZTFLH:  TG113  
基金资助:* 国家自然科学基金项目51271035和中央高校基本科研业务费专项资金项目FRF-TP-10-001A资助
作者简介: null

赵征志, 男, 1977年生, 副研究员

图1  0.14C-2.72Mn-1.3Si钢退火工艺路线
图2  不同退火温度下实验钢板显微组织的SEM像
T / ℃ fF / % fM / % fRA / % Cγ / %
760 65.97 28.17 5.86 1.02
780 50.97 44.49 4.54 1.07
800 26.14 68.11 5.75 1.12
820 25.82 70.33 3.85 1.25
表1  不同退火温度下实验钢中各相体积分数和残余奥氏体中C含量
图3  不同退火温度下实验钢的TEM像
图4  不同退火温度下实验钢的力学性能
图5  不同退火温度下实验钢的应力-应变曲线
图6  不同退火温度下实验钢的XRD谱
图7  不同退火温度下实验钢残余奥氏体含量及残余奥氏体中C含量
图8  800 ℃退火后实验钢中残余奥氏体的TEM像
图9  不同退火温度下实验钢板的瞬时加工硬化指数n
图10  实验钢加工硬化行为的改进C-J方法分析结果
图11  实验钢的EBSD成像图
T / ℃ mI mII mIII etr1 / %
(mI →mII)
etr2 / %
(mII→mIII)
760 2.9 2.0 6.7 0.9 1.8
780 2.6 3.0 8.0 0.8 1.6
800 - 2.8 8.0 - 1.3
820 - 3.3 8.7 - 1.3
表2  实验钢不同硬化阶段应力指数m及转变点的应变
T / ℃ dF
μm
dM
μm
f M / d M
(%·μm-1)1/2
nmin nmax nmax-nmin
760 4.6 0.23 11.07 0.38 0.58 0.20
780 3.7 0.51 9.34 0.46 0.62 0.16
800 2.2 0.82 9.11 0.47 0.63 0.16
820 1.3 1.42 7.04 0.54 0.64 0.10
表3  实验钢退火后等效晶粒尺寸及n的极值
图12  铁素体体积分数对实验钢马氏体与铁素体共同塑性变形的应变范围△e的影响
  
[1] Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311
[2] Matsumura O, Sakuma Y, Takechi H. Scr Metall, 1987; 21: 1301
[3] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775
[4] Bouaziz O, Guelton N. Mater Sci Eng, 2001 A319-321: 246
[5] Barnett M R. Mater Sci Eng, 2007; A464: 1
[6] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[7] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[8] Jiang H T, Tang D, Mi Z L, Chen Y L. J Univ Sci Technol Beijing, 2010; 32: 201
[8] (江海涛, 唐 荻, 米振莉, 陈雨来. 北京科技大学学报, 2010; 32: 201)
[9] Nouri A, Saghafian H, Kheirandish S. J Iron Steel Res Int, 2010; 17(5): 44
[10] Fan Y, Wang M L, Zhang H, Tao H B, Zhao P, Li S Q. J Univ Sci Technol Beijing, 2013; 35: 607
[10] (范 倚, 王明林, 张 慧, 陶红标, 赵 沛, 李士琦. 北京科技大学学报, 2013; 35: 607)
[11] Zhong N, Wang X D, Wang L, Rong Y H. Mater Sci Eng, 2009; A506: 111
[12] Li Z, Zhao A M, Tang D, Mi Z L, Jiao D H. J Univ Sci Technol Beijing, 2012; 34: 132
[12] (李 振, 赵爱民, 唐 荻, 米振莉, 焦殿辉. 北京科技大学学报, 2012; 34: 132)
[13] Zhang L Y, Wu D, Li Z. J Iron Steel Res Int, 2012; 19(2): 42
[14] Koh-ichi S, Daiki F, Nobuo Y. Procedia Eng, 2010; 2: 359
[15] Speich G R, Demarest V A, Miller R L. Metall Trans, 1981; 12A: 1419
[16] Sayed A A, Kheirandish Sh. Mater Sci Eng, 2012; A532: 21
[17] Rosenberg G, Sinaiová I, Juhar Ľ. Mater Sci Eng, 2013; A582: 347
[18] Yan S, Liu X H, Liu W J, Lan H F, Wu H Y. Acta Metall Sin, 2013; 49: 917
[18] (闫 述, 刘相华, 刘伟杰, 蓝慧芳, 吴红艳. 金属学报, 2013; 49: 917)
[19] Wang C Y, Shi J, Cao W Q, Dong H. Acta Metall Sin, 2011; 47: 720
[19] (王存宇, 时 捷, 曹文权, 董 瀚. 金属学报, 2011; 47: 720)
[20] Mohammad R A, Ekrami A. Mater Sci Eng, 2008; A477: 30
[21] Kang Y L, Kuang S, Yin X D. Automob Technol Mater, 2006; (5): 1
[21] (康永林, 邝 霜, 尹显东. 汽车工艺与材料, 2006; (5): 1)
[22] Ren Y Q, Xie Z J, Shang C J. Acta Metall Sin, 2012; 48: 1074
[22] (任勇强, 谢振家, 尚成嘉. 金属学报, 2012; 48: 1074)
[23] Li Y L. J Chongqing Univ (Nat Sci), 2001; 24(3): 58
[23] (李玉兰. 重庆大学学报(自然科学版), 2001; 24(3): 58)
[24] Colla V, Sanctis D M, Dimatteo A. Metall Mater Trans, 2009; 40: 2557
[25] Nie W J, Shang C J, Guan H L, Zhang X B, Chen S H. Acta Metall Sin, 2012; 48: 298
[25] (聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧. 金属学报, 2012; 48: 298)
[26] Zhao Z Z, Ye J Y, Wang Z G, Zhao A M. J Shenyang Univ Technol, 2013; 35: 36
[26] (赵征志, 叶洁云, 汪志刚, 赵爱民. 沈阳工业大学学报, 2013; 35: 36)
[27] Seyedrezai H, Pilkey A K, Boyd J D. Mater Sci Eng, 2014; A594: 178
[28] Mazinani M, Poole W J. Metall Mater Trans, 2007; 38A: 328
[29] Lanzillotto C A N, Pickering F B. Met Sci, 1982; 16: 371
[30] Ashby M F. Philos Mag, 1966; 14: 1157
[31] Ashby M F. Philos Mag, 1970; 21: 399
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[3] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[4] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[5] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[6] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[7] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[8] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[9] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[10] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[11] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[12] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
[13] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[14] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.
[15] 巨彪, 武会宾, 唐荻, 潘学福. 微观组织演变对超高强耐磨钢板力学性能的影响[J]. 金属学报, 2014, 50(9): 1055-1062.