|
|
高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用 |
王冠杰1,2, 李开旗1,2, 彭力宇1,2, 张壹铭1,2, 周健1,2, 孙志梅1,2( ) |
1. 北京航空航天大学 材料科学与工程学院 北京 100191 2. 北京航空航天大学 国际交叉科学研究院 集成计算材料工程中心 北京 100191 |
|
High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys |
WANG Guanjie1,2, LI Kaiqi1,2, PENG Liyu1,2, ZHANG Yiming1,2, ZHOU Jian1,2, SUN Zhimei1,2( ) |
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China 2. Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China |
引用本文:
王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
Guanjie WANG,
Kaiqi LI,
Liyu PENG,
Yiming ZHANG,
Jian ZHOU,
Zhimei SUN.
High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. Acta Metall Sin, 2022, 58(1): 75-88.
1 |
Agrawal A , Choudhary A . Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
|
2 |
Holdren J P . Materials genome initiative for global competitiveness [R]. Washington, DC: Executive Office of the President of the United States, National Science and Technology Council, 2011
|
3 |
Lin L C , Berger A H , Martin R L , et al . In silico screening of carbon-capture materials [J]. Nat. Mater., 2012, 11: 633
|
4 |
Su Y J , Fu H D , Bai Y , et al . Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
4 |
宿彦京, 付华栋, 白 洋 等 . 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
5 |
Yang K S , Setyawan W , Wang S D , et al . A search model for topological insulators with high-throughput robustness descriptors [J]. Nat. Mater., 2012, 11: 614
|
6 |
Jain A , Ong S P , Hautier G , et al . Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
|
7 |
Ong S P , Richards W D , Jain A , et al . Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis [J]. Comput. Mater. Sci., 2013, 68: 314
|
8 |
Jain A , Ong S P , Chen W , et al . FireWorks: A dynamic workflow system designed for high-throughput applications [J]. Concurr. Comput., 2015, 27: 5037
|
9 |
Mathew K , Montoya J H , Faghaninia A , et al . Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows [J]. Comput. Mater. Sci., 2017, 139: 140
|
10 |
Supka A R , Lyons T E , Liyanage L , et al . AFLOWπ: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians [J]. Comput. Mater. Sci., 2017, 136: 76
|
11 |
Pizzi G , Cepellotti A , Sabatini R , et al . AiiDA: Automated interactive infrastructure and database for computational science [J]. Comput. Mater. Sci., 2016, 111: 218
|
12 |
Larsen A H , Mortensen J J , Blomqvist J , et al . The atomic simulation environment—A Python library for working with atoms [J]. J. Phys.: Condens. Matter, 2017, 29: 273002
|
13 |
Belsky A , Hellenbrandt M , Karen V L , et al . New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design [J]. Acta Cryst., 2002, 58B: 364
|
14 |
Quirós M , Gražulis S , Girdzijauskaitė S , et al . Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database [J]. J. Cheminform., 2018, 10: 23
|
15 |
Curtarolo S , Setyawan W , Wang S D , et al . AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
|
16 |
Kirklin S , Saal J E , Meredig B , et al . The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies [J]. npj Comput. Mater., 2015, 1: 15010
|
17 |
Draxl C , Scheffler M . The NOMAD laboratory: From data sharing to artificial intelligence [J]. J. Phys. Mater., 2019, 2: 036001
|
18 |
Pedregosa F , Varoquaux G , Gramfort A , et al . Scikit-learn: Machine learning in Python [J]. J. Mach. Learn. Res., 2011, 12: 2825
|
19 |
Abadi M, Agarwal A, Barham P, et al . TensorFlow: Large-scale machine learning on heterogeneous distributed systems [Z]. arXiv:1603.04467, 2016
|
20 |
Paszke A , Gross S , Massa F , et al . PyTorch: An imperative style, high-performance deep learning library [A]. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) [C]. Vancouver, Canada: Curran Associates, 2019: 32
|
21 |
Ouyang R H , Ahmetcik E , Carbogno C , et al . Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO [J]. J. Phys. Mater., 2019, 2: 024002
|
22 |
Gossett E , Toher C , Oses C , et al . AFLOW-ML: A RESTful API for machine-learning predictions of materials properties [J]. Comput. Mater. Sci., 2018, 152: 134
|
23 |
Ward L , Dunn A , Faghaninia A , et al . Matminer: An open source toolkit for materials data mining [J]. Comput. Mater. Sci., 2018, 152: 60
|
24 |
Wang G J , Peng L Y , Li K Q , et al . ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
|
25 |
Kingma D P, Ba J. Adam: A method for stochastic optimization [Z]. arXiv:1412.6980, 2014
|
26 |
Zhang C Y, Bengio S, Hardt M, et al . Understanding deep learning requires rethinking generalization [Z]. arXiv:1611.03530, 2016
|
27 |
Hunter J D . Matplotlib: A 2D graphics environment [J]. Comput. Sci. Eng., 2007, 9: 90
|
28 |
Kresse G , Hafner J . Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
|
29 |
Giannozzi P , Baroni S , Bonini N , et al . Quantum Espresso: A modular and open-source software project for quantum simulations of materials [J]. J. Phys.: Condens. Matter, 2009, 21: 395502
|
30 |
Huang Y D , Zhou J , Wang G J , et al . Abnormally strong electron-phonon scattering induced unprecedented reduction in lattice thermal conductivity of two-dimensional Nb2C [J]. J. Am. Chem. Soc., 2019, 141: 8503
|
31 |
Gonze X , Amadon B , Anglade P M , et al . ABINIT: First-principles approach to material and nanosystem properties [J]. Comput. Phys. Commun., 2009, 180: 2582
|
32 |
Plimpton S . Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
33 |
Tegeler M , Shchyglo O , Kamachali R D , et al . Parallel multiphase field simulations with OpenPhase [J]. Comput. Phys. Commun., 2017, 215: 173
|
34 |
Lukas H L , Fries S G , Sundman B . Computational Thermodynamics: The Calphad Method [M]. Cambridge: Cambridge University Press, 2007: 265
|
35 |
Otero-de-la-Roza A , Abbasi-Pérez D , Luaña V . Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation [J]. Comput. Phys. Commun., 2011, 182: 2232
|
36 |
Morgan B J . Lattice-geometry effects in garnet solid electrolytes: A lattice-gas Monte Carlo simulation study [J]. Roy. Soc. Open Sci., 2017, 4: 170824
|
37 |
Sun Z M , Zhou J , Blomqvist A , et al . Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy [J]. Phys. Rev. Lett., 2009, 102: 075504
|
38 |
Cheng Y X , Zhu L G , Wang G J , et al . Vacancy formation energy and its connection with bonding environment in solid: A high-throughput calculation and machine learning study [J]. Comput. Mater. Sci., 2020, 183: 109803
|
39 |
Peng Q , Zhou J , Chen J T , et al . Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell [J]. J. Mater. Chem., 2019, 7A: 26062
|
40 |
Peng L Y , Li Z , Wang G J , et al . Reduction in thermal conductivity of Sb2Te phase-change material by scandium/yttrium doping [J]. J. Alloys Compd., 2020, 821: 153499
|
41 |
Kalinin S V , Sumpter B G , Archibald R K . Big-deep-smart data in imaging for guiding materials design [J]. Nat. Mater., 2015, 14: 973
|
42 |
Pan F S , Zhang D F , et al . Alumimum Alloy and Application [M]. Beijing: Chemical Industry Press, 2006: 155
|
42 |
潘复生, 张丁非 等 . 铝合金及应用 [M]. 北京: 化学工业出版社, 2006: 155
|
43 |
Guan R G , Luo H F , Huang H , et al . Development of aluminum alloy materials: Current status, trend, and prospects [J]. Strateg. Stud. CAE, 2020, 22(5): 68
|
43 |
管仁国, 娄花芬, 黄 晖 等 . 铝合金材料发展现状、趋势及展望 [J]. 中国工程科学, 2020, 22(5): 68
|
44 |
Madsen G K H , Singh D J . BoltzTraP. A code for calculating band-structure dependent quantities [J]. Comput. Phys. Commun., 2006, 175: 67
|
45 |
Wang G J , Zhou J , Elliott S R , et al . Role of carbon-rings in polycrystalline GeSb2Te4 phase-change material [J]. J. Alloys Compd., 2019, 782: 852
|
46 |
Wang G J , Zhou J , Sun Z M . First principles investigation on anomalous lattice shrinkage of W alloyed rock salt GeTe [J]. J. Phys. Chem. Solids, 2020, 137: 109220
|
47 |
Mouhat F , Coudert F X . Necessary and sufficient elastic stability conditions in various crystal systems [J]. Phys. Rev., 2014, 90B: 224104
|
48 |
Hill R . The elastic behaviour of a crystalline aggregate [J]. Proc. Phys. Soc., 1952, 65A: 349
|
49 |
Voigt W . Lehrbuch der Kristallphysik [M]. Leipzig: B. G. Teubner, 1928: 1
|
50 |
Guo X Q , Podloucky R , Freeman A J . First principles calculation of the elastic constants of intermetallic compounds: Metastable Al3Li [J]. J. Mater. Res., 1991, 6: 324
|
51 |
Chinmulgund M , Inturi R B , Barnard J A . Effect of Ar gas pressure on growth, structure, and mechanical properties of sputtered Ti, Al, TiAl, and Ti3Al films [J]. Thin Solid Films, 1995, 270: 260
|
52 |
Zhang D T , Li Y Y , Luo Z Q . A review on the progress of rapidly solidified hypereutectic Al-Si alloy materials [J]. Light Alloy Fabr. Technol., 2001, 29(2): 1
|
52 |
张大童, 李元元, 罗宗强 . 快速凝固过共晶铝硅合金材料的研究进展 [J]. 轻合金加工技术, 2001, 29(2): 1
|
53 |
Xiang Q C , Wang J Y , Zhou Z P , et al . Survey on the development and application of Al-Fe alloys [J]. Foundry, 2006, 55: 875
|
53 |
向青春, 王静媛, 周振平 等 . 铝铁合金的研究进展与应用状况 [J]. 铸造, 2006, 55: 875
|
54 |
Shackelford J F , Alexander W . CRC Materials Science and Engineering Handbook [M]. 3rd Ed., Boca Raton: CRC Press, 2000: 41
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|