Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 75-88    DOI: 10.11900/0412.1961.2021.00041
  研究论文 本期目录 | 过刊浏览 |
高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用
王冠杰1,2, 李开旗1,2, 彭力宇1,2, 张壹铭1,2, 周健1,2, 孙志梅1,2()
1. 北京航空航天大学 材料科学与工程学院 北京 100191
2. 北京航空航天大学 国际交叉科学研究院 集成计算材料工程中心 北京 100191
High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys
WANG Guanjie1,2, LI Kaiqi1,2, PENG Liyu1,2, ZHANG Yiming1,2, ZHOU Jian1,2, SUN Zhimei1,2()
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2. Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
引用本文:

王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
Guanjie WANG, Kaiqi LI, Liyu PENG, Yiming ZHANG, Jian ZHOU, Zhimei SUN. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. Acta Metall Sin, 2022, 58(1): 75-88.

全文: PDF(2997 KB)   HTML
摘要: 

材料研发模式经历了经验主导的第一范式、理论模型主导的第二范式和计算模拟主导的第三范式,如今正处于数据驱动的第四范式。为加速新材料的设计与研发,发展基于材料数据库和人工智能算法的高通量自动集成计算和数据挖掘算法变得至关重要。本文介绍了作者团队自主开发的分布式高通量自动流程集成计算和数据管理智能平台ALKEMIE2.0 (Artificial Learning and Knowledge Enhanced Materials Informatics Engineering 2.0),该平台基于AMDIV设计理念,包含了自动化、模块化、数据库、人工智能和可视化流程等5个适用于数据驱动的材料研发模式核心要素。概括来说,ALKEMIE2.0以模块化的方式集成了多个不同尺度的计算模拟软件;其高通量自动纠错流程可实现从建模、运行到数据分析,全程自动无人工干预;支持单用户不低于104量级的并发高通量自动计算模拟。进一步而言,ALKEMIE2.0具有强大的可移植性和可扩展性,目前已部署在国家超算天津中心,基于多类型材料数据库结合超算强大的计算能力使得人工智能算法在新材料设计与研发中得以快速的应用和实践。更重要的是,ALKEMIE2.0设计了用户友好的可视化操作界面,使得结构建模、工作流计算逻辑、数据分析和机器学习模型具有更高的透明性和更强的可操作性,且适用于对材料计算模拟掌握程度从初级到专业的所有材料研究人员。最后,通过多平台部署和高通量筛选二元铝合金2个算例详细展示了ALKEMIE2.0的主要特色及功能。

关键词 材料基因工程高通量计算材料数据库人工智能多尺度集成计算二元铝合金高通量筛选    
Abstract

The development of novel materials has experienced three paradigms: purely empirical, theoretical models, and computational materials science. Currently, the huge amount of data generated by experiments and simulations has facilitated a shift in materials science to a data-driven fourth paradigm. Therefore, the development of high-throughput automatic integrated computations and data mining algorithms based on material databases and artificial intelligence algorithms is critical for accelerating the design of novel materials. This paper presents an open-source distributed computational platform called Artificial Learning and Knowledge Enhanced Materials Informatics Engineering 2.0 (ALKEMIE2.0) based on the AMDIV (automation-modular-database-intelligence-visualization) design concepts. The ALKEMIE2.0 platform includes five core components of automation, modular, materials database, artificial intelligence, and visualization, which are suitable for the computational design of novel materials. The overall characteristics of ALKEMIE2.0 are divided into five pillars. ALKEMIE-Core integrates multiscale calculations and simulation software using the ALKEMIE-Plugin application programming interface. Its high-throughput calculation workflows that support 104 magnitude concurrencies are implemented by integrating the automatic frameworks of model constructions, calculation workflows, and data analyses. Furthermore, the platform is based on the ALKEMIE-Server, which can easily and automatically open daemon services and realize information interactions in distributed supercomputers. With its strong portability and scalability, ALKEMIE has been deployed in the National Supercomputing Tianjin Center. In addition, the multitype materials database called the ALKEMIE-Data Vault contains structure, task, workflow, and material property databases, which combined with the power of supercomputing, enables the rapid application of artificial intelligence algorithms in the design of new materials. In particular, the many user-friendly interfaces, which were elaborately designed using the ALKEMIE-GUI and are suitable for scientists with broad backgrounds, make structural building, work flowcharts, data analysis, and machine learning models more transparent and maneuverable. Finally, the main features of ALKEMIE2.0 are demonstrated using two examples of multiplatform deployment and high-throughput screening of binary aluminum alloys.

Key wordsmaterials genome engineering    high-throughput calculation    materials database    artificial intelligence    multi-scale integrated simulation    high-throughput screening of binary aluminum alloy
收稿日期: 2021-01-21     
ZTFLH:  TB30  
基金资助:国家重点研发计划项目(2017YFB0701700);国家自然科学基金项目(51872017);北航高性能计算平台项目
作者简介: 王冠杰,男,1994年生,博士生
图1  ALKEMIE2.0平台的AMDIV设计理念
图2  ALKEMIE2.0系统架构
图3  ALKEMIE2.0平台概况及可视化工作流 (a) the modular (b) work area and workflows of ALKEMIE2.0
图4  高通量自动计算与智能纠错流程图
图5  ALKEMIE2.0数据库类型
图6  铝合金热力学稳定性的高通量筛选,包括未计算的合金化元素(灰色)、能量不稳定的合金化元素(红色)以及能量稳定的合金化元素(白色),热力学稳定的合金化元素的形成能(负数代表稳定,正数代表不稳定),及合金元素的平均键长和晶格常数随原子半径的变化散点图
图7  铝合金力学性能和导电性能的高通量筛选
1 Agrawal A , Choudhary A . Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
2 Holdren J P . Materials genome initiative for global competitiveness [R]. Washington, DC: Executive Office of the President of the United States, National Science and Technology Council, 2011
3 Lin L C , Berger A H , Martin R L , et al . In silico screening of carbon-capture materials [J]. Nat. Mater., 2012, 11: 633
4 Su Y J , Fu H D , Bai Y , et al . Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
4 宿彦京, 付华栋, 白 洋 等 . 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
5 Yang K S , Setyawan W , Wang S D , et al . A search model for topological insulators with high-throughput robustness descriptors [J]. Nat. Mater., 2012, 11: 614
6 Jain A , Ong S P , Hautier G , et al . Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
7 Ong S P , Richards W D , Jain A , et al . Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis [J]. Comput. Mater. Sci., 2013, 68: 314
8 Jain A , Ong S P , Chen W , et al . FireWorks: A dynamic workflow system designed for high-throughput applications [J]. Concurr. Comput., 2015, 27: 5037
9 Mathew K , Montoya J H , Faghaninia A , et al . Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows [J]. Comput. Mater. Sci., 2017, 139: 140
10 Supka A R , Lyons T E , Liyanage L , et al . AFLOWπ: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians [J]. Comput. Mater. Sci., 2017, 136: 76
11 Pizzi G , Cepellotti A , Sabatini R , et al . AiiDA: Automated interactive infrastructure and database for computational science [J]. Comput. Mater. Sci., 2016, 111: 218
12 Larsen A H , Mortensen J J , Blomqvist J , et al . The atomic simulation environment—A Python library for working with atoms [J]. J. Phys.: Condens. Matter, 2017, 29: 273002
13 Belsky A , Hellenbrandt M , Karen V L , et al . New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design [J]. Acta Cryst., 2002, 58B: 364
14 Quirós M , Gražulis S , Girdzijauskaitė S , et al . Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database [J]. J. Cheminform., 2018, 10: 23
15 Curtarolo S , Setyawan W , Wang S D , et al . AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
16 Kirklin S , Saal J E , Meredig B , et al . The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies [J]. npj Comput. Mater., 2015, 1: 15010
17 Draxl C , Scheffler M . The NOMAD laboratory: From data sharing to artificial intelligence [J]. J. Phys. Mater., 2019, 2: 036001
18 Pedregosa F , Varoquaux G , Gramfort A , et al . Scikit-learn: Machine learning in Python [J]. J. Mach. Learn. Res., 2011, 12: 2825
19 Abadi M, Agarwal A, Barham P, et al . TensorFlow: Large-scale machine learning on heterogeneous distributed systems [Z]. arXiv:1603.04467, 2016
20 Paszke A , Gross S , Massa F , et al . PyTorch: An imperative style, high-performance deep learning library [A]. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) [C]. Vancouver, Canada: Curran Associates, 2019: 32
21 Ouyang R H , Ahmetcik E , Carbogno C , et al . Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO [J]. J. Phys. Mater., 2019, 2: 024002
22 Gossett E , Toher C , Oses C , et al . AFLOW-ML: A RESTful API for machine-learning predictions of materials properties [J]. Comput. Mater. Sci., 2018, 152: 134
23 Ward L , Dunn A , Faghaninia A , et al . Matminer: An open source toolkit for materials data mining [J]. Comput. Mater. Sci., 2018, 152: 60
24 Wang G J , Peng L Y , Li K Q , et al . ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
25 Kingma D P, Ba J. Adam: A method for stochastic optimization [Z]. arXiv:1412.6980, 2014
26 Zhang C Y, Bengio S, Hardt M, et al . Understanding deep learning requires rethinking generalization [Z]. arXiv:1611.03530, 2016
27 Hunter J D . Matplotlib: A 2D graphics environment [J]. Comput. Sci. Eng., 2007, 9: 90
28 Kresse G , Hafner J . Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
29 Giannozzi P , Baroni S , Bonini N , et al . Quantum Espresso: A modular and open-source software project for quantum simulations of materials [J]. J. Phys.: Condens. Matter, 2009, 21: 395502
30 Huang Y D , Zhou J , Wang G J , et al . Abnormally strong electron-phonon scattering induced unprecedented reduction in lattice thermal conductivity of two-dimensional Nb2C [J]. J. Am. Chem. Soc., 2019, 141: 8503
31 Gonze X , Amadon B , Anglade P M , et al . ABINIT: First-principles approach to material and nanosystem properties [J]. Comput. Phys. Commun., 2009, 180: 2582
32 Plimpton S . Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
33 Tegeler M , Shchyglo O , Kamachali R D , et al . Parallel multiphase field simulations with OpenPhase [J]. Comput. Phys. Commun., 2017, 215: 173
34 Lukas H L , Fries S G , Sundman B . Computational Thermodynamics: The Calphad Method [M]. Cambridge: Cambridge University Press, 2007: 265
35 Otero-de-la-Roza A , Abbasi-Pérez D , Luaña V . Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation [J]. Comput. Phys. Commun., 2011, 182: 2232
36 Morgan B J . Lattice-geometry effects in garnet solid electrolytes: A lattice-gas Monte Carlo simulation study [J]. Roy. Soc. Open Sci., 2017, 4: 170824
37 Sun Z M , Zhou J , Blomqvist A , et al . Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy [J]. Phys. Rev. Lett., 2009, 102: 075504
38 Cheng Y X , Zhu L G , Wang G J , et al . Vacancy formation energy and its connection with bonding environment in solid: A high-throughput calculation and machine learning study [J]. Comput. Mater. Sci., 2020, 183: 109803
39 Peng Q , Zhou J , Chen J T , et al . Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell [J]. J. Mater. Chem., 2019, 7A: 26062
40 Peng L Y , Li Z , Wang G J , et al . Reduction in thermal conductivity of Sb2Te phase-change material by scandium/yttrium doping [J]. J. Alloys Compd., 2020, 821: 153499
41 Kalinin S V , Sumpter B G , Archibald R K . Big-deep-smart data in imaging for guiding materials design [J]. Nat. Mater., 2015, 14: 973
42 Pan F S , Zhang D F , et al . Alumimum Alloy and Application [M]. Beijing: Chemical Industry Press, 2006: 155
42 潘复生, 张丁非 等 . 铝合金及应用 [M]. 北京: 化学工业出版社, 2006: 155
43 Guan R G , Luo H F , Huang H , et al . Development of aluminum alloy materials: Current status, trend, and prospects [J]. Strateg. Stud. CAE, 2020, 22(5): 68
43 管仁国, 娄花芬, 黄 晖 等 . 铝合金材料发展现状、趋势及展望 [J]. 中国工程科学, 2020, 22(5): 68
44 Madsen G K H , Singh D J . BoltzTraP. A code for calculating band-structure dependent quantities [J]. Comput. Phys. Commun., 2006, 175: 67
45 Wang G J , Zhou J , Elliott S R , et al . Role of carbon-rings in polycrystalline GeSb2Te4 phase-change material [J]. J. Alloys Compd., 2019, 782: 852
46 Wang G J , Zhou J , Sun Z M . First principles investigation on anomalous lattice shrinkage of W alloyed rock salt GeTe [J]. J. Phys. Chem. Solids, 2020, 137: 109220
47 Mouhat F , Coudert F X . Necessary and sufficient elastic stability conditions in various crystal systems [J]. Phys. Rev., 2014, 90B: 224104
48 Hill R . The elastic behaviour of a crystalline aggregate [J]. Proc. Phys. Soc., 1952, 65A: 349
49 Voigt W . Lehrbuch der Kristallphysik [M]. Leipzig: B. G. Teubner, 1928: 1
50 Guo X Q , Podloucky R , Freeman A J . First principles calculation of the elastic constants of intermetallic compounds: Metastable Al3Li [J]. J. Mater. Res., 1991, 6: 324
51 Chinmulgund M , Inturi R B , Barnard J A . Effect of Ar gas pressure on growth, structure, and mechanical properties of sputtered Ti, Al, TiAl, and Ti3Al films [J]. Thin Solid Films, 1995, 270: 260
52 Zhang D T , Li Y Y , Luo Z Q . A review on the progress of rapidly solidified hypereutectic Al-Si alloy materials [J]. Light Alloy Fabr. Technol., 2001, 29(2): 1
52 张大童, 李元元, 罗宗强 . 快速凝固过共晶铝硅合金材料的研究进展 [J]. 轻合金加工技术, 2001, 29(2): 1
53 Xiang Q C , Wang J Y , Zhou Z P , et al . Survey on the development and application of Al-Fe alloys [J]. Foundry, 2006, 55: 875
53 向青春, 王静媛, 周振平 等 . 铝铁合金的研究进展与应用状况 [J]. 铸造, 2006, 55: 875
54 Shackelford J F , Alexander W . CRC Materials Science and Engineering Handbook [M]. 3rd Ed., Boca Raton: CRC Press, 2000: 41
[1] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[2] 谢建新, 宿彦京, 薛德祯, 姜雪, 付华栋, 黄海友. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
[3] 宿彦京, 付华栋, 白洋, 姜雪, 谢建新. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323.