Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 947-956    DOI: 10.11900/0412.1961.2016.00474
  本期目录 | 过刊浏览 |
轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理
王猛, 刘振宇(), 李成刚
东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Effects of Ultra-Fast Cooling After Hot Rolling and Lamellarizing on Microstructure and Cryogenic Toughness of 5%Ni Steel
Meng WANG, Zhenyu LIU(), Chenggang LI
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
Meng WANG, Zhenyu LIU, Chenggang LI. Effects of Ultra-Fast Cooling After Hot Rolling and Lamellarizing on Microstructure and Cryogenic Toughness of 5%Ni Steel[J]. Acta Metall Sin, 2017, 53(8): 947-956.

全文: PDF(1977 KB)   HTML
摘要: 

采用“控制轧制、轧后超快冷、亚温淬火+回火(UFC-LT)”工艺制备了5%Ni钢,系统研究了这一工艺条件下5%Ni钢的微观组织与力学性能,并与常规调质工艺(QT)和离线淬火、亚温淬火加回火工艺(QLT)进行了对比。结果表明,经UFC-LT工艺处理后,5%Ni钢的显微组织由回火马氏体、临界铁素体和5.83%的逆转奥氏体组成,并可以获得优于QT和QLT工艺的强韧性匹配(抗拉强度为608 MPa,屈服强度为491 MPa,-196 ℃时Charpy冲击功为185 J),韧脆转变温度由QT工艺的-152 ℃下降到-196 ℃以下。与QT工艺相比,UFC-LT工艺改善韧性的因素主要有渗碳体的溶解、高密度的大角度晶界及5.83%的逆转奥氏体。

关键词 5%Ni钢超快冷逆转奥氏体低温韧性    
Abstract

In recent years, the demands for liquefied ethylene gas (LEG) are rapidly increased in China. 5%Ni steel is being widely used to build LEG tanks, due to the excellent toughness, high strength and ductility of the material. Along with the continuous increase in the size of LEG tanks, higher cryogenic toughness has been required for new generation 5%Ni steel. In this work, controlled rolling (CR) has been developed in the aim of microstructure refinement for Ni-containing steels, and ultra-fast cooling (UFC) after hot rolling has been successfully applied to replace on-line direct quenching, which formed the integrated CR-UFC for 5%Ni steel. A new processing technologies, named UFC-LT treatment which consisted of CR-UFC, lamellarizing and tempering has been developed for 5%Ni steel in this work. The microstructure and mechanical properties of 5%Ni steel treated by UFC-LT were investigated, as well as quenching and tempering (QT), quenching, lamellarizing and tempering (QLT) treatments. The results show that the microstructure of 5%Ni steel treated by UFC-LT treatment consisted of tempered martensite, intercritical ferrite and about 5.83% reversed austenite. The reversed austenite has two types of morphologies: one type is acicular reversed austenite which forms along the lath boundaries; another type is block reversed austenite which mainly forms at prior austenite grain boundaries. An optimum combination of strength and toughness were obtained by UFC-LT treatment (ultimate tensile strength is 608 MPa, yield strength is 491 MPa, elongation is 34%, Charpy impact energy at -196 ℃ is 185 J). The ductile-brittle transition temperature of 5%Ni steel treated by QT and UFC-LT heat treatments were -152 ℃ and lower than -196 ℃, respectively. The superior cryogenic toughness compared to QT treatment contributed to the dissolution of cementite, high percentage of large angle grain boundaries and the formation of 5.83% reversed austenite.

Key words5%Ni steel    ultra-fast cooling    reversed austenite    cryogenic toughness
收稿日期: 2016-10-24     
ZTFLH:  TG162.83  
基金资助:中央高校基本科研业务费专项资金项目Nos.N120807001和N110607006
作者简介:

作者简介 王 猛,男,1987年生,博士生

图1  3种加工工艺示意图
图2  不同热轧工艺条件下5%Ni钢的OM像
图3  不同热处理工艺条件下5%Ni钢的SEM像
图4  QT、QLT与UFC-LT工艺处理后5%Ni钢的EBSD像
图5  QT、QLT与UFC-LT工艺处理后5%Ni钢的TEM像和SAED谱
Heat treatment Volume fraction / % Grain size / μm Mass fraction / %
C Mn Ni
QT 1.93 0.135 0.61 1.75 7.93
QLT 6.98 0.177 0.71 2.11 9.72
UFC-LT 5.83 0.162 0.73 2.19 9.56
表1  不同热处理工艺条件下5%Ni钢中逆转奥氏体的体积分数、尺寸和C、Mn、Ni元素含量
Heat treatment RP0.2 / MPa Rm / MPa RP0.2/Rm A / %
QT 529 613 0.86 27
QLT 462 583 0.79 35
UFC-LT 491 608 0.81 34
表2  不同热处理工艺下5%Ni钢的力学性能
图6  不同热处理工艺条件下5%Ni钢的冲击功
图7  不同热处理工艺条件下5%Ni钢在-196 ℃冲击后断口的SEM像
图8  不同热处理工艺条件下5%Ni钢在-196 ℃下的载荷-位移曲线和平均冲击功
图9  不同热处理工艺条件下5%Ni钢冲击断口附近的SEM像
[1] Chen S H, Zhao M J, Li X Y, et al.Compression stability of reversed austenite in 9Ni steel[J]. J. Mater. Sci. Technol., 2012, 28: 558
[2] Yang Y H, Cai Q W, Tang D, et al.Precipitation and stability of reversed austenite in 9Ni steel[J]. Int. J. Miner. Metall. Mater., 2010, 17: 587
[3] Strife J R, Passoja D E.The effect of heat treatment on microstructure and cryogenic fracture properties in 5Ni and 9Ni steel[J]. Metall. Trans., 1980, 11A: 1341
[4] Zhao X Q, Pan T, Wang Q F, et al.Effect of tempering temperature on microstructure and mechanical properties of steel containing Ni of 9%[J]. J. Iron Steel Res. Int., 2011, 18: 47
[5] Fultz B, Kim J I, Kim Y H, et al.The stability of precipitated austenite and the toughness of 9Ni steel[J]. Metall. Trans., 1985, 16A: 2237
[6] Syn C K, Morris J W, Jin S.Cryogenic fracture toughness of 9Ni steel enhanced through grain refinement[J]. Metall. Trans., 1976, 7A: 1827
[7] Lei M, Guo Y Y.Formation of precipitated austenite in 9%Ni steel and its permannce at cryogenic temperature[J]. Acta Metall. Sin.(Engl. Lett.), 1989, 2: 244
[8] Kim J I, Syn C K, Morris J W.Microstructural sources of toughness in QLT-treated 5.5Ni cryogenic steel[J]. Metall. Trans., 1983, 14A: 93
[9] Wu S J, Sun G J, Ma Q S, et al.Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel[J]. J. Mater. Process. Technol., 2013, 213: 120
[10] Jahazi M, Egbali B.The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel[J]. J. Mater. Process. Technol., 2000, 103: 276
[11] Bilmes P D, Solari M, Llorente C L.Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals[J]. Mater. Charact., 2001, 46: 285
[12] Tan X D, Xu Y B, Yang X L, et al.Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel[J]. Mater. Sci. Eng., 2014, A594: 149
[13] Wang X L, Wang X M, Shang C J, et al.Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness[J]. Mater. Sci. Eng., 2016, A649: 282
[14] Xie Z J, Ren Y Q, Zhou W H, et al.Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel[J]. Mater. Sci. Eng., 2014, A603: 69
[15] Yang Y H, Cai Q W, Wu H B, et al.Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two-phase region heat treatment[J]. Acta Metall. Sin., 2009, 45: 270(杨跃辉, 蔡庆伍, 武会宾等. 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45: 270)
[16] Zhang Y T, Li C, Wang P, et al.In situ synchrotron X-ray diffraction investigation on tensile properties of 9Ni steel[J]. Acta Metall. Sin., 2016, 52: 403(张玉妥, 李丛, 王培等. 9Ni钢拉伸性能的同步辐射高能X射线原位研究[J]. 金属学报, 2016, 52: 403)
[17] Xie Z J, Shang C J, Zhou W H, et al.Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel[J]. Acta Metall. Sin., 2016, 52: 224(谢振家, 尚成嘉, 周文浩等. 低合金多相钢中残余奥氏体对塑性和韧性的影响[J]. 金属学报, 2016, 52: 224)
[18] Zhou W H, Xie Z J, Guo H, et al.Regulation of multi-phase microstructure and mechanical properties in a 700 MPa grade low carbon low alloy steel with good ductility[J]. Acta Metall. Sin., 2015, 51: 407(周文浩, 谢振家, 郭晖等. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51: 407)
[19] Lan L Y, Qiu C L, Zhao D W, et al.Microstructural characters and toughness of different sub-regions in the welding heat affected zone of low carbon bainitic steel[J]. Acta Metall. Sin., 2011, 47: 1046(兰亮云, 邱春林, 赵德文等. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性[J]. 金属学报, 2011, 47: 1046)
[20] Hashemi S H. Apportion of Charpy energy in API 5L grade X70 pipeline steel [J]. Int. J. Press. Vess. Pip., 2008, 85: 879
[21] Liu J, Yu H, Wang J, et al.Effect of tempering temperature on microstructure evolution and mechanical properties of 5%Cr steel via electro-slag casting[J]. Steel Res. Int., 2015, 86: 1082
[22] Hu J, Du L X, Liu H, et al.Structure-mechanical property relationship in a low-C medium-Mn ultrahigh strength heavy plate steel with austenite-martensite submicro-laminate structure[J]. Mater. Sci. Eng., 2015, A647: 144
[23] Hwang B, Lee C G, Kim S J.Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels[J]. Metall. Mater. Trans., 2010, 42A: 717
[24] Wang X Y, Pan T, Wang H, et al.Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel[J]. Acta Metall. Sin., 2012, 48: 401(王小勇, 潘涛, 王华等. Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究[J]. 金属学报, 2012, 48: 401)
[25] Pan T, Zhu J, Su H, et al.Ni segregation and thermal stability of reversed austenite in a Fe-Ni alloy processed by QLT heat treatment[J]. Rare Met., 2015, 34: 776
[26] Hu J, Du L X, Sun G S, et al.The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel[J]. Scr. Mater., 2015, 104: 87
[27] Xie Z J, Yuan S F, Zhou W H, et al.Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel[J]. Mater. Des., 2014, 59: 193
[28] Xu Z Y, Jin J X, Rong Y H.Strengthening and toughening mechanisms of quenching-partitioning-tempering (Q-P-T) steels[J]. J. Alloys Compd., 2013, 577: S568
[29] Wang C J, Liang J X, Liu Z B, et al.Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering[J]. Acta Metall. Sin., 2016, 52: 385(王长军, 梁剑雄, 刘振宝等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52: 385)
[30] Lai G Y, Wood W E, Clark R A, et al.The Effect of austenitizing temperature on the microstructure and mechanical properties of as-quenched 4340 steel[J]. Metall. Trans., 1974, 5: 1663
[31] Kim K J, Schwartz L H.On the effects of intercritical tempering on the impact energy of Fe-9Ni-0.1C[J]. Mater. Sci. Eng., 1978, 33: 5
[32] Gao G H, Zhang H, Gui X L, et al.Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: The great potential of ultrafine filmy retained austenite[J]. Acta Mater., 2014, 76: 425
[33] Yan P, Liu Z D, Bao H S, et al.Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel[J]. Mater. Des., 2014, 54: 874
[1] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[2] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[3] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[4] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[5] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
[6] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[7] 李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
[8] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
[9] 陈俊, 唐帅,刘振宇,王国栋. 冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响[J]. 金属学报, 2012, 48(4): 441-449.
[10] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
[11] 杨银辉 柴锋 严彪 苏航 杨才福. Ti处理改善船体钢焊接粗晶区的低温韧性研究[J]. 金属学报, 2010, 46(1): 62-70.
[12] 杨跃辉 蔡庆伍 武会宾 王华. 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45(3): 270-274.
[13] 胡本芙; 贾成厂 . Fe-Cr-Mn(W,V)奥氏体钢的低温韧性[J]. 金属学报, 2001, 37(7): 703-708 .
[14] 国旭明; 钱百年 . 电磁搅拌对管线钢埋弧焊熔敷金属低温韧性的影响[J]. 金属学报, 2000, 36(2): 177-180 .
[15] 雷鸣;郭蕴宜. 9%Ni钢中沉淀奥氏体的形成过程及其在深冷下的表现[J]. 金属学报, 1989, 25(1): 13-17.