Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 601-606    DOI: 10.3724/SP.J.1037.2012.00108
  论文 本期目录 | 过刊浏览 |
晶粒尺寸对超低碳IF钢耐大气腐蚀性能的影响
汪兵,刘清友,王向东
钢铁研究总院结构材料研究所~ 先进钢铁流程及材料国家重点实验室, 北京 100081
EFFECT OF GRAIN SIZE ON ATMOSPHERIC CORROSION RESISTANCE OF ULTRA--LOW CARBON IF STEEL
WANG Bing,  LIU Qinyou,  WANG Xiangdong
Institute for Structural Materials, State Key Laboratory of Advanced Steel Processing and Products, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

汪兵,刘清友,王向东. 晶粒尺寸对超低碳IF钢耐大气腐蚀性能的影响[J]. 金属学报, 2012, 48(5): 601-606.
, , . EFFECT OF GRAIN SIZE ON ATMOSPHERIC CORROSION RESISTANCE OF ULTRA--LOW CARBON IF STEEL[J]. Acta Metall Sin, 2012, 48(5): 601-606.

全文: PDF(2438 KB)  
摘要: 采用不同轧制及热处理工艺制备了化学成分相同而晶粒尺寸不同的3种超低碳IF钢试样. 采用浸泡腐蚀、周浸腐蚀、原子力显微镜(AFM)及扫描电镜(SEM)微观分析、电化学阻抗测试等手段对晶粒尺寸与IF钢耐大气腐蚀性能之间的规律进行了研究. AFM及SEM微观分析结果表明, 随着晶粒尺寸从15 μm增加到220 μm, 超低碳IF钢浸泡腐蚀后晶界处的局部腐蚀更加严重, 腐蚀裂纹处的深度加深, 裂纹宽度变宽. 超低碳IF钢晶粒尺寸从15 μm增加到46 μm, 周浸腐蚀实验后锈层中空洞和裂纹增多, 锈层电阻下降, 耐候性下降; 晶粒尺寸进一步增大到220 μm后, 锈层整体致密性得到增加, 锈层电阻上升, 耐候性得到增加. 对晶粒尺寸影响耐大气腐蚀性能的机理进行了讨论. 晶粒尺寸增大后晶界能的减少使得腐蚀表面的宏观总体缺陷数量有所减少, 耐候性有所提高; 但是晶粒尺寸增大后晶界处因局部腐蚀电流密度增大将会在局部造成更深的腐蚀坑槽并降低耐候性; 晶粒尺寸的变化对钢铁材料耐大气腐蚀性能的影响不仅要考虑其对晶界局部腐蚀电流密度的影响, 而且还必须考虑对基体整体晶界能所造成的影响.
关键词 晶粒尺寸超低碳IF钢大气腐蚀性能    
Abstract:Three kinds of ultra-low carbon IF steel with different grain sizes, and same chemical composition were prepared by different rolling and heat treat process. The relationship between grain size and atmospheric corrosion resistance of IF steel was investigated by immersion corrosion test, cyclic immersion corrosion test, AFM/SEM micro-analysis and electrochemical test. The results show that the local corrosion in grain boundary increases after immersion corrosion test, the depth of crack in grain boundary becomes deeper and the width of crack becomes wider with grain sizes of IF steel increase from 15 μm to 220 μm. The crack and cavity in the rust after cycle immersion corrosion test are increased and the atmospheric corrosion resistance is decreased with IF steel grain size coarsing from 15 μm to 46 μm. As grain size increase from 15 μm to\linebreak 220 μm, the whole compactness of rust are increased, the rust resistance and the atmospheric corrosion resistance are increased. The effect of grain size on the corrosion current density of local grain boundary was analysed and the mechanics of corrosion was discussed. The total quantity of corrosion surface defect is decreased due to the decrease of grain boundary energy with the increase of grain size and the atmospheric corrosion resistance is increased. Meanwhile, the local corrosion near the grain boundary is increased duo to the increase of local corrosion current density with the increase of grain size and the atmospheric corrosion resistance is decreased. The atmospheric corrosion resistance is influenced by the two factors simultaneously.
Key wordsgrain size    ultra-low carbon IFsteel    atmospheric corrosion resistance
收稿日期: 2012-02-28     
ZTFLH: 

TG174

 
作者简介: 汪兵, 男, 1970年生, 高级工程师
[1] Weng Y Q.  ISIJ Int, 2003; 43: 1675

[2] Jouko I L.  Adv Mater Process, 2001; 159: 31

[3] Cao C N.  Environmental Corrosion of Materials in China. Beijing: Chemistry Industry Press, 2005

    (曹楚南. 中国材料的自然环境腐蚀. 北京: 化学工业出版社, 2005)

[4] Youssef K M S, Koch C C, Fedkiw P S.  Corros Sci, 2004; 46 (1): 51--64

[5] Wislei R O, Celia M F, Amauri G.  Mater Sci Eng, 2005; A402(1-2): 22--32

[6] Di S A , Barteri M, Kenny J.  J Mater Sci, 2003; 38(15): 3257--3262

[7] Kalmykov V V, Razdobreev V G.  Prot Met, 1999; 35(6): 598--599

[8] Li Y, Wang F, Liu G.  Corrosion, 2004; 60(10): 891--896

[9] Wang B, Liu Q Y, Jia S J, Wang X D, Lu J, Dong H.  J Chin Soc Corros Prot, 2007; 27(4): 193--196

    (汪兵, 刘清友, 贾书君, 王向东, 卢吉, 董瀚. 中国腐蚀与防护学报, 2007; 27(4): 193--196)

[10] Jiang P F, Wang B, Liu Q Y, Shi Z.  Steel, 2009; 44(12): 67--70

     (姜鹏飞, 汪兵, 刘清友, 施哲. 钢铁, 2009; 44(12): 67--70)

[11] Mi F Y, Wang X D, Wang B, Chen X P, Peng Y.  J Chin Soc Corros Prot, 2010; 30(5): 391--395

     (米丰毅, 王向东, 汪兵, 陈小平, 彭云. 中国腐蚀与防护学报, 2010; 30(5): 391--395)

[12] Li S P, Guo J, Yang S W, He X L.  J Univ Sci Technol Beijing, 2008; 30(1): 16--20

     (李少坡, 郭佳, 杨善武, 贺信莱. 北京科技大学学报, 2008; 30(1): 16--20)

[13] Guo J, Yang S W, Shang C J, Wang Y, He X L.  Corros Sci, 2009; 51: 242

[14] Guo J, Yang S W, Shang C J, Wang Y, He X L.  Iron Steel, 2008; 43: 58

     (郭佳, 杨善武, 尚成嘉, 王郢, 贺信莱. 钢铁, 2008; 43: 58)

[15] Sarkar P P, Kumar P, Manna M K, Charaborti P.  Mater Lett, 2005; 59: 2488

[16] Dong J, Cui W F, Zhang S X, Liu C M.  J Northeastern Univ, 2007; 12: 1294

     (董杰, 崔文芳, 张思勋, 刘春明. 东北大学学报, 2007; 12: 1294)

[17] Fu G Y, Liu Q, Men B J, Zhang H L.  Rare Met Mater Eng, 2007; 36: 695

     (付广艳, 刘群, 门冰洁, 张宏亮. 稀有金属材料与工程, 2007; 36: 695)

[18] Jin G Y, Qiao L J, Gao K W, Kimura T, Hashimoto K, Chu W Y.  Chin J Nonferrous Met, 2004; 14: 210

     (金光熙, 乔利杰, 高克玮, Kimura T, Hashimoto K, 褚武扬. 中国有色金属学报, 2004; 14: 210)

[19] Qi J J, Huang Y H, Zhang Y.  Microalloying Steel. Beijing: Metallurgical Industry Press, 2006: 10

     (齐俊杰, 黄运华, 张跃. 微合金化钢. 北京: 冶金工业出版社, 2006: 10)

[20] Cao C N, Zhang J Q.  An Introduction to Electrochemical Impedance Spectroscopy.Beijing: Science Press, 2002: 188

     (曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 188)

[21] Wang S T, Yang S W, Gao K W, Shen X A, He X L.  Acta Metall Sin, 2008; 44: 1116

     (王树涛, 杨善武, 高克玮, 沈晓安, 贺信莱. 金属学报, 2008; 44: 1116)

[22] Bousselmi L, Fiaud C, Tribollet B, Triki E.  Corros Sci, 1997; 39: 1711

[23] Bousselmi L, Fiaud C, Tribollet B, Triki E.  Electrochim Acta, 1999; 44: 4357

[24] Santana Rodriguez J J, Santana Hernandez F J, Gonzalez J E.  Corros Sci, 2002; 44: 2597

[25] Yu Y N.  Metallography. Bei Jjing: Metallurgical Industry Press, 2000: 375

     (余永宁. 金属学. 北京: 冶金工业出版社, 2000: 375)
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[4] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[5] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[6] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[7] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[8] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[9] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[10] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[11] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[12] 宋永锋, 李雄兵, 吴海平, 司家勇, 韩晓芹. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法*[J]. 金属学报, 2016, 52(3): 378-384.
[13] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[14] 赵清,夏爽,周邦新,白琴,苏诚,王宝顺,蔡志刚. 形变及热处理对825合金管材晶界特征分布的影响*[J]. 金属学报, 2015, 51(12): 1465-1471.
[15] 李雄兵, 宋永锋, 倪培君, 刘锋. 面向晶粒尺寸的超声多尺度衰减评价方法[J]. 金属学报, 2015, 51(1): 121-128.